scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
Proceedings ArticleDOI
01 Dec 2012
TL;DR: A key result from the analysis is that, as massively broadband systems become more prevalent, it will be important to assess the ideal cell size to achieve the lowest energy consumption per pit, as higher bandwidth systems generally benefit form shorter transmission distances.
Abstract: The growing demand for bandwidth intensive wireless applications and devices portend a future where millimeter-wave and sub-THz carrier frequencies will be used to provide massively broadband® bandwidths and many Giga-bits-per-second (Gbps) data rates in mobile environments [1]. Concurrently, the importance of energy efficiency for communication systems incentivizes discovery of new routing and access techniques that work in conjunction with power saving protocols to maximize battery life and improve power consumption. Wireless channels, as well as the wireless devices themselves, play a major role in determining both achievable data rates and power requirements. In this paper, we use the consumption factor [2] framework to quantify the impact of channel characteristics on both data rate performance and power consumption in a wireless link. Based on recent 38 GHz cellular propagation measurements [3], we demonstrate how future (5G) millimeter-wave cellular channels will impact the data rates and power requirements for future millimeter-wave cellular systems having cell radii less than a km. Analysis results presented here show how to include frequency-domain representations of the channel for use in the consumption factor analysis. A key result from the analysis is that, as massively broadband systems become more prevalent, it will be important to assess the ideal cell size to achieve the lowest energy consumption per pit. Higher bandwidth systems generally benefit form shorter transmission distances. As futuristic cellular standards contemplate the use of millimeter-wave frequencies for greater bandwidths, the work here may offer insight into how to analyze energy efficiency and performance.

19 citations

Proceedings ArticleDOI
02 Jul 2018
TL;DR: The spatial consistency extension will enable NYUSIM to generate realistic evolutions of temporal and spatial characteristics of the wideband CIRs for mobile users in motion, or for multiple users who are in close proximity to one another.
Abstract: This paper describes an implementation of spatial consistency in the NYUSIM channel simulation platform. NYUSIM is a millimeter wave (mmWave) channel simulator that realizes measurement-based channel models based on a wide range of multipath channel parameters, including realistic multipath time delays and multipath components that arrive at different 3-D angles in space, and generates life-like samples of channel impulse responses (CIRs) that statistically match those measured in the real world. To properly simulate channel impairments and variations for adaptive antenna algorithms or channel state feedback, channel models should implement spatial consistency which ensures correlated channel responses over short time and distance epochs. The ability to incorporate spatial consistency into channel simulators will be essential to explore the ability to train and deploy massive multiple- input and multiple-output (MIMO) and multi-user beamforming in next-generation mobile communication systems. This paper implements spatial consistency in NYUSIM for when a user is moving in a square area with the side length 15 m. The spatial consistency extension will enable NYUSIM to generate realistic evolutions of temporal and spatial characteristics of the wideband CIRs for mobile users in motion, or for multiple users who are in close proximity to one another.

18 citations

Journal ArticleDOI
TL;DR: The computational methodologies of two problem solving environments for wireless network design and analysis, one academic (S4W) and one commercial (SitePlanner®) are described, compared and contrasted in a common framework.
Abstract: This paper describes the computational methodologies of two problem solving environments (PSEs) for wireless network design and analysis, one academic (S4W) and one commercial (SitePlanner®). The PSEs address differently common computational issues such as environment specification, propagation modeling, channel performance prediction, system design optimization, and data management. The intended uses, interfaces, and capabilities of the two PSEs are compared and contrasted in a common framework. An important future direction, for these two and all future wireless system design PSEs, is resolving the fundamental 'impedance mismatch' between physical channel modeling and upper level protocol modeling in wireless networks.

18 citations

Journal ArticleDOI
TL;DR: This work extends the DR algorithm to not only exploit the knowledge of the PN code but also to preserve the constant modulus property of the signal to create a new algorithm called LS-DRMTCMA.
Abstract: We apply the concept of the despread-respread (DR) algorithm to multi-target arrays for code-division multiple-access (CDMA) signals, the despread-respread algorithm exploits the knowledge of the pseudo-noise (PN) code used to generate the transmitted CDMA signal. We extend the DR algorithm to not only exploit the knowledge of the PN code but also to preserve the constant modulus property of the signal. This new algorithm is called the least squares despread respread multi-target constant modulus array (LS-DRMTCMA). LS-DRMTCMA performs better than the least squares despread respread multi-target array (LS-DTMTA), least squares multi-target constant modulus array (LS-MTCMA), and steepest descent multi-target decision directed array (SD-MTDDA).

18 citations

Posted Content
TL;DR: In this paper, the authors provided similar correction factors for models at 60 GHz and 73 GHz, by imparting slope correction factors on the theoretical free space (FS) and SUI path loss models to closely match the close-in (CI) free space reference distance path loss model.
Abstract: Fifth-generation (5G) cellular systems are likely to operate in the centimeter-wave (3-30 GHz) and millimeter-wave (30-300 GHz) frequency bands, where a vast amount of underutilized bandwidth exists world-wide. To assist in the research and development of these emerging wireless systems, a myriad of measurement studies have been conducted to characterize path loss in urban environments at these frequencies. The standard theoretical free space (FS) and Stanford University Interim (SUI) empirical path loss models were recently modified to fit path loss models obtained from measurements performed at 28 GHz and 38 GHz, using simple correction factors. In this paper, we provide similar correction factors for models at 60 GHz and 73 GHz. By imparting slope correction factors on the FS and SUI path loss models to closely match the close-in (CI) free space reference distance path loss models, millimeter-wave path loss can be accurately estimated (with popular models) for 5G cellular planning at 60 GHz and 73 GHz. Additionally, new millimeter-wave beam combining path loss models are provided at 28 GHz and 73 GHz by considering the simultaneous combination of signals from multiple antenna pointing directions between the transmitter and receiver that result in the strongest received power. Such directional channel models are important for future adaptive array systems at millimeter-wave frequencies.

18 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations