scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
Proceedings ArticleDOI
01 Dec 2020
TL;DR: In this article, an indoor three-dimensional (3-D) statistical channel model for mmWave and sub-THz frequencies was developed from extensive channel propagation measurements conducted in an office building at 28 GHz and 140 GHz in 2014 and 2019.
Abstract: Millimeter-wave (mmWave) and Terahertz (THz) will be used in the sixth-generation (6G) wireless systems, especially for indoor scenarios. This paper presents an indoor three-dimensional (3-D) statistical channel model for mmWave and sub-THz frequencies, which is developed from extensive channel propagation measurements conducted in an office building at 28 GHz and 140 GHz in 2014 and 2019. Over 15,000 power delay profiles (PDPs) were recorded to study channel statistics such as the number of time clusters, cluster delays, and cluster powers. All the parameters required in the channel generation procedure are derived from empirical measurement data for 28 GHz and 140 GHz line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The channel model is validated by showing that the simulated root mean square (RMS) delay spread and RMS angular spread yield good agreements with measured values. An indoor channel simulation software is built upon the popular NYUSIM outdoor channel simulator, which can generate realistic channel impulse response, PDP, and power angular spectrum.

12 citations

Journal ArticleDOI
TL;DR: This paper anticipates the need for massively large adaptive arrays for future 5G and 6G systems and proposes three new hybrid DFT 1024-point DFT approximations and their respective fast algorithms, which have significantly reduced circuit complexity and power consumption compared to traditional FFT approaches.
Abstract: The discrete Fourier transform (DFT) is widely employed for multi-beam digital beamforming. The DFT can be efficiently implemented through the use of fast Fourier transform (FFT) algorithms, thus reducing chip area, power consumption, processing time, and consumption of other hardware resources. This paper proposes three new hybrid DFT 1024-point DFT approximations and their respective fast algorithms. These approximate DFT (ADFT) algorithms have significantly reduced circuit complexity and power consumption compared to traditional FFT approaches while trading off a subtle loss in computational precision which is acceptable for digital beamforming applications in RF antenna implementations. ADFT algorithms have not been introduced for beamforming beyond $N = 32$ , but this paper anticipates the need for massively large adaptive arrays for future 5G and 6G systems. Digital CMOS circuit designs for the ADFTs show the resulting improvements in both circuit complexity and power consumption metrics. Simulation results show similar or lower critical path delay with up to 48.5% lower chip area compared to a standard Cooley-Tukey FFT. The time-area and dynamic power metrics are reduced up to 66.0%. The 1024-point ADFT beamformers produce signal-to-noise ratio (SNR) gains between 29.2–30.1 dB, which is a loss of ≤ 0.9 dB SNR gain compared to exact 1024-point DFT beamformers (worst case) realizable at using an FFT.

12 citations

Proceedings ArticleDOI
28 Dec 2009
TL;DR: In this paper, the authors present an overview of important software and simulation tools and key layout issues and design rules for millimeter-wave (mmWave) circuits and an example of a recently fabricated 0.18µm CMOS integrated circuit by the Wireless Networking and Communications Group (WNCG) at The University of Texas at Austin is presented.
Abstract: This invited contribution provides insights for im- plementation of millimeter-wave and terahertz wireless systems on a chip (MTWSOC). We present an overview of important software and simulation tools and key layout issues and design rules for millimeter-wave (mmWave) circuits. An example of a recently fabricated 0.18µm CMOS integrated circuit by the Wireless Networking and Communications Group (WNCG) at The University of Texas at Austin is presented. The example chip includes 60 GHz on-chip antennas, an array of transmission lines, and IMPATT diodes. Index Terms—60 GHz, millimeter-wave, on-chip antenna, IM- PATT diode, CPW, Transmission Lines, RFIC, CMOS, WPAN, SOC, MTWS

12 citations

Patent
26 Mar 2004
TL;DR: In this article, a building database manipulator is used to build databases for a variety of physical environments including definitions of buildings, terrain and other site parameters by scanning in or rapidly editing data Raster scans may be entered or object files in various formats may be used as input.
Abstract: A Building Database Manipulator to build databases for a variety of physical environments including definitions of buildings, terrain and other site parameters, by scanning in or rapidly editing data Raster scans may be entered or object files in various formats may be used as input Detailed information is stored in the drawing database about the object's location, radio frequency attenuation, color, and other physical information such as electrical characteristics and intersections of the object with the ground, floors, ceilings, and other objects when objects are formatted in a drawing The formatting process is strictly two-dimensional in nature, but the resulting drawing is a true three-dimensional environment The user sees the three-dimensional building structure by altering the views The resulting database may be used in a variety of modeling applications, but is especially useful for engineering, planning and management tools for in-building or microcell wireless systems Grouping objects in layers allows for simultaneous conversion of all objects in one layer to have certain predetermined attributes (eg, converting objects to be made from glass versus cement; converting objects within a layer to have a uniform, smaller or larger, height or width dimension)

12 citations

Journal ArticleDOI
TL;DR: Traffic statistics at two operational hotspots in Austin, Texas, USA, provide insights into the required provisioning for PWLANs and yield autonomous control approaches in future broadband wireless access and real-time wireless voice/video services.
Abstract: Measured public wireless local-area network (PWLAN) traffic statistics at two operational hotspots in Austin, Texas, USA, are presented. The results provide insights into the required provisioning for PWLANs and yield autonomous control approaches in future broadband wireless access and real-time wireless voice/video services.

12 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations