scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
01 Jan 2001
TL;DR: By focusing on a restrictive subset of markup languages, this work describes how facilities such as management of the execution environment, experiment management, and reasoning about model sequences can be provided.
Abstract: We outline various design considerations and implementation options pertaining to lightweight data management in problem solving environments (PSEs). The emphasis is on compositional modeling, in the context of a PSE for wireless communications system design (S4W). By focusing on a restrictive subset of markup languages, we describe how facilities such as management of the execution environment, experiment management, and reasoning about model sequences can be provided.

6 citations

Proceedings ArticleDOI
01 Dec 2011
TL;DR: An Open-Source web-based archiving system to organize and share wireless RF propagation measurement data, models, and simulation software in a centralized, standardized archive based on Semantic Web ideas is presented.
Abstract: In this paper, we present an Open-Source web-based archiving system to organize and share wireless RF propagation measurement data, models, and simulation software in a centralized, standardized archive. This archiving system is based on Semantic Web ideas that will enable the wireless research community to easily share and access measured data and simulators provided by researchers across the globe. To begin development of the web-based archiving environment, we use a previously developed RF propagation simulator, SIRCIM [6], to represent the range of values, types of measurements, and file format types that would be needed to properly archive measurements from the research community at large. This paper also explores development issues and considerations required to build a Semantic Web on-line propagation channel measurement and modeling archiving system for global use.

6 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a sliding correlation-based channel sounder baseband built on a monolithic integrated circuit (IC) using 65 nm CMOS, implemented as an evaluation board achieving a 2 GHz RF bandwidth.
Abstract: Emerging applications such as wireless sensing, position location, robotics, and many more are driven by the ultra-wide bandwidths available at millimeter-wave (mmWave) and Terahertz (THz) frequencies. The characterization and efficient utilization of wireless channels at these extremely high frequencies require detailed knowledge of the radio propagation characteristics of the channels. Such knowledge is developed through empirical observations of operating conditions using wireless transceivers that measure the impulse response through channel sounding. Today, cutting-edge channel sounders rely on several bulky RF hardware components with complicated interconnections, large parasitics, and sub-GHz RF bandwidth. This brief presents a compact sliding correlation-based channel sounder baseband built on a monolithic integrated circuit (IC) using 65 nm CMOS, implemented as an evaluation board achieving a 2 GHz RF bandwidth. The IC is the world’s first gigabit-per-second channel sounder baseband implemented in low-cost CMOS. The presented single-board system can be employed at both the transmit and receive baseband to study multipath characteristics and path loss. Thus, the single-board implementation provides an inexpensive and compact solution for sliding correlation-based channel sounding with 1 ns multipath delay resolution.

6 citations

Proceedings ArticleDOI
06 May 1990
TL;DR: In this article, an autonomous guided vehicle (AGV) has been developed for use in indoor propagation measurements and for a research/teaching tool in the Computer Integrated Manufacturing Laboratory (CIML).
Abstract: At Virginia Tech, an autonomous guided vehicle (AGV) has been developed for use in indoor propagation measurements and for a research/teaching tool in the Computer Integrated Manufacturing Laboratory. The AGV design strategy, navigation methodology, and a calibration technique used to minimize path errors caused by unequal wheel radii in dead-reckoning navigation are described. The basic geometry of dead-reckoning navigation is developed, with a particular emphasis on the use of a calibration run to yield exact wheel radii and steering correction factors for use in navigation. These techniques were used on an actual AGV, and measurements were taken under operating conditions to determine navigation accuracy. The major limitation in dead reckoning comes from improper estimates of wheel radii. This can be compensated for with a calibration run, but the tire radius may still change due to dynamic conditions such as redistribution of vehicle weight during cornering, and inexact manufacturing of the tires themselves. Measurements of vehicle position through use of calibrated dead reckoning show accurate vehicle position to within a few cm along a 10 m path. >

6 citations

Proceedings ArticleDOI
01 Dec 2020
TL;DR: In this article, the authors provide an overview of 3GPP position location techniques that are designed for line-of-sight propagation and validate the concepts in this paper by using field data to test a map-based position location algorithm in an indoor office environment.
Abstract: 3GPP air interface standards support meter-level position location of a user in a cellular network. With wider bandwidths and narrow antenna beamwidths available at mmWave frequencies, cellular networks now have the potential to provide sub-meter position location for each user. In this work, we provide an overview of 3GPP position location techniques that are designed for line-of-sight propagation. We discuss additional measurements required in the 3GPP standard that enable multipath-based non-line-of-sight position location. Further, we validate the concepts in this paper by using field data to test a map-based position location algorithm in an indoor office environment which has dimensions of 35 m by 65.5 m. We demonstrate how the fusion of angle of arrival and time of flight information in concert with a 3-D map of the office provides a mean accuracy of 5.72 cm at 28 GHz and 6.29 cm at 140 GHz, over 23 receiver distances ranging from 4.2 m to 32.3 m, using a single base station in line-of-sight and non-line-of-sight. We also conduct a theoretical analysis of the typical error experienced in the map-based position location algorithm and show that the complexity of the map-based algorithm is low enough to allow real-time implementation.

6 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations