scispace - formally typeset
Search or ask a question
Author

Theodore S. Rappaport

Bio: Theodore S. Rappaport is an academic researcher from New York University. The author has contributed to research in topics: Path loss & Multipath propagation. The author has an hindex of 112, co-authored 490 publications receiving 68853 citations. Previous affiliations of Theodore S. Rappaport include University of Waterloo & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors present a full stack end-to-end performance analysis in ns-3 using drop-based NYU channel model and 3GPP statistical channel model (SCM) in scenarios, namely, urban microcell (UMi), urban macrocell(UMa), rural macrocell (RMa), and indoor hotspot (InH) at 28 GHz with 100 MHz bandwidth.
Abstract: Accurate channel modeling and simulation tools are vital for studying sub-THz and millimeter (mmWave) wideband communication system performance. To accurately design future high data rate, low latency wireless modems, the entire protocol stack must be appropriately modeled to understand how the physical layer impacts the end-to-end performance experienced by the end user. This paper presents a full stack end-to-end performance analysis in ns-3 using drop-based NYU channel model (NYUSIM) and 3GPP statistical channel model (SCM) in scenarios, namely urban microcell (UMi), urban macrocell (UMa), rural macrocell (RMa), and indoor hotspot (InH) at 28 GHz with 100 MHz bandwidth. Video data is transmitted at 50 Mbps using User Datagram Protocol (UDP), and we observe that the RMa channel is benign in non-line of sight (NLOS) for NYUSIM and 3GPP SCM as it exhibits no packet drops and yields maximum throughput (48.1 Mbps) and latency of $\sim$ 20 ms. In NLOS, for NYUSIM, the UMa and RMa channels are similar in terms of throughput and packet drops, and the latency in UMi and InH scenarios is 10 times and 25 times higher respectively compared to UMa. Our results indicate that mmWave bands can support data rates of 50 Mbps with negligible packet drops and latency below 150 ms in all scenarios using NYUSIM.
Proceedings ArticleDOI
02 May 2023
TL;DR: In this paper , the authors present a detailed implementation of the drop-based NYU channel model (NYUSIM) for the frequency range of 0.5-100 GHz for the UMi, UMa, RMa, InH, and InF scenarios.
Abstract: The next generation of wireless networks will use sub-THz frequencies alongside mmWave frequencies to enable multi-Gbps and low latency applications. To enable different verticals and use cases, engineers must take a holistic approach to build, analyze, and study different parts of the network and the interplay among the lower and higher layers of the protocol stack. It is of paramount importance to accurately characterize the radio propagation in diverse scenarios such as urban microcell (UMi), urban macrocell (UMa), rural macrocell (RMa), indoor hotspot (InH), and indoor factory (InF) for a wide range of frequencies. The 3GPP statistical channel model (SCM) is oversimplified and restricted to the frequency range of 0.5-100 GHz. Thus, to overcome these limitations, this paper presents a detailed implementation of the drop-based NYU channel model (NYUSIM) for the frequency range of 0.5–150 GHz for the UMi, UMa, RMa, InH, and InF scenarios. NYUSIM allows researchers to design and evaluate new algorithms and protocols for future sub-THz wireless networks in ns-3.
Patent
14 Nov 2012
TL;DR: In this paper, an ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks.
Abstract: An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
Patent
14 Nov 2012
TL;DR: In this paper, an ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks.
Abstract: An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
01 Jan 1992
TL;DR: The performance of the CDMA system is analyzed when space diversity is employed, and it is shown that a substantial improvement in performance is indeed possible.
Abstract: It is desired to determine the effect ·of second order diversity on a cellular code division multiple access (CDMA) system. Toward that end, we consider somewhat of a worst-case situation for the base-to-mobile link, namely one where a mobile is straddling the boundary between two cells. We analyze the performance of the system when space diversity is employed, and show that a substantial improvement in performance is indeed possible.

Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations