scispace - formally typeset
Search or ask a question
Author

Theodoros P. Horikis

Bio: Theodoros P. Horikis is an academic researcher from University of Ioannina. The author has contributed to research in topics: Soliton & Nonlinear system. The author has an hindex of 19, co-authored 97 publications receiving 900 citations. Previous affiliations of Theodoros P. Horikis include Imperial College London & University of Colorado Boulder.


Papers
More filters
Journal ArticleDOI
TL;DR: The dynamics of dark matter-wave solitons in elongated atomic condensates are discussed at finite temperatures, and the average soliton dynamics is well captured by the simpler dissipative Gross-Pitaevskii equation.
Abstract: The dynamics of dark matter-wave solitons in elongated atomic condensates are discussed at finite temperatures. Simulations with the stochastic Gross-Pitaevskii equation reveal a noticeable, experimentally observable spread in individual soliton trajectories, attributed to inherent fluctuations in both phase and density of the underlying medium. Averaging over a number of such trajectories (as done in experiments) washes out such background fluctuations, revealing a well-defined temperature-dependent temporal growth in the oscillation amplitude. The average soliton dynamics is well captured by the simpler dissipative Gross-Pitaevskii equation, both numerically and via an analytically derived equation for the soliton center based on perturbation theory for dark solitons.

61 citations

Journal ArticleDOI
TL;DR: Ring dark and antidark solitons in nonlocal media are found and it is demonstrated analytically that they satisfy an effective cylindrical Kadomtsev-Petviashvili equation and, as such, can be written explicitly in closed form.
Abstract: Ring dark and antidark solitons in nonlocal media are found. These structures have, respectively, the form of annular dips or humps on top of a stable CW background, and exist in a weak or strong nonlocality regime, defined by the sign of a characteristic parameter. It is demonstrated analytically that these solitons satisfy an effective cylindrical Kadomtsev-Petviashvili (aka Johnson's) equation and, as such, can be written explicitly in closed form. Numerical simulations show that they propagate undistorted and undergo quasi-elastic collisions, attesting to their stability properties.

59 citations

Journal ArticleDOI
TL;DR: Ring dark and anti-dark solitons in nonlocal media are found in this paper, where annular dips or humps on top of a stable continuous-wave background, and exist in a weak or strong nonlocality regime.
Abstract: Ring dark and anti-dark solitons in nonlocal media are found. These structures have, respectively, the form of annular dips or humps on top of a stable continuous-wave background, and exist in a weak or strong nonlocality regime, defined by the sign of a characteristic parameter. It is demonstrated analytically that these solitons satisfy an effective cylindrical Kadomtsev-Petviashvilli (aka Johnson's) equation and, as such, can be written explicitly in closed form. Numerical simulations show that they propagate undistorted and undergo quasi-elastic collisions, attesting to their stability properties.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrodinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interaction and ferromagnetic spins exchange interactions(self-focusing case).

54 citations

Journal ArticleDOI
TL;DR: In this paper, a rogue wave formation mechanism is proposed within the framework of a coupled nonlinear Schrodinger (CNLS) system corresponding to the interaction of two waves propagating in oblique directions in deep water.
Abstract: A rogue wave formation mechanism is proposed within the framework of a coupled nonlinear Schrodinger (CNLS) system corresponding to the interaction of two waves propagating in oblique directions in deep water. A rogue condition is introduced that links the angle of interaction with the group velocities of these waves: different angles of interaction can result in a major enhancement of rogue events in both numbers and amplitude. For a range of interacting directions, it is found that the CNLS system exhibits significantly more extreme wave amplitude events than its scalar counterpart. Furthermore, the rogue events of the coupled system are found to be well approximated by hyperbolic secant functions; they are vectorial soliton-type solutions of the CNLS system, typically not considered to be integrable. Overall, our results indicate that crossing states provide an important mechanism for the generation of rogue water wave events.

37 citations


Cited by
More filters
Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations

Book ChapterDOI
27 Jan 2010

878 citations

MonographDOI
01 Sep 2011
TL;DR: The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg-de Vries (KdV) in the nineteenth century.
Abstract: The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.

411 citations

01 Jan 2002
TL;DR: In this article, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

360 citations