scispace - formally typeset
Search or ask a question
Author

Theodosios Pavlidis

Bio: Theodosios Pavlidis is an academic researcher from State University of New York System. The author has contributed to research in topics: Segmentation & Image segmentation. The author has an hindex of 41, co-authored 93 publications receiving 10089 citations. Previous affiliations of Theodosios Pavlidis include Princeton University & Symbol Technologies.


Papers
More filters
Journal ArticleDOI
TL;DR: A method for the recognition of multifont printed characters is proposed, giving emphasis to the identification of structural descriptions of character shapes using prototypes, accomplishing robustness to noise with less than two prototypes per class, on average.
Abstract: A method for the recognition of multifont printed characters is proposed, giving emphasis to the identification of structural descriptions of character shapes using prototypes. Noise and shape variations are modeled as series of transformations from groups of features in the data to features in each prototype. Thus, the method manages systematically the relative distortion between a candidate shape and its prototype, accomplishing robustness to noise with less than two prototypes per class, on average. The method uses a flexible matching between components and a flexible grouping of the individual components to be matched. A number of shape transformations are defined, including filling of gaps, so that the method handles broken characters. Also, a measure of the amount of distortion that these transformations cause is given. Classification of character shapes is defined as a minimization problem among the possible transformations that map an input shape into prototypical shapes. Some tests with hand-printed numerals confirmed the method's high robustness level. >

166 citations

Journal ArticleDOI
TL;DR: To compare encoding and decoding schemes requires one to first look into information and coding theory and solve problems and possible solutions in encoding information.
Abstract: To compare encoding and decoding schemes requires one to first look into information and coding theory. This article discusses problems and possible solutions in encoding information. >

147 citations

Journal ArticleDOI
TL;DR: Waveform segmentation is treated as a problem of piecewise linear uniform (minmax) approximation and can be used for pattern recognition, data compression, and nonlinear filtering not only for waveforms but also for pictures and maps.
Abstract: Waveform segmentation is treated as a problem of piecewise linear uniform (minmax) approximation. Various algorithms are reviewed and a new one is proposed based on discrete optimization. Examples of its applications are shown on terrain profiles, scanning electron microscope data, and electrocardiograms. The processing is sufficiently fast to allow its use on-line. The results of the segmentation can be used for pattern recognition, data compression, and nonlinear filtering not only for waveforms but also for pictures and maps. In the latter case some additional preprocessing is required and it is described in [19].

144 citations

Journal ArticleDOI
01 Nov 1975
TL;DR: The outlines of handwritten numerals are approximated by polygons using a method previously developed by Pavlidis and Horowitz, which enables a simple evaluation of many intuitively descriptive features for numerals, for example, relative position and type of concave arcs.
Abstract: The outlines of handwritten numerals are approximated by polygons using a method previously developed by Pavlidis and Horowitz [10]. This enables a simple evaluation of many intuitively descriptive features for numerals, for example, relative position and type of concave arcs. The method was tested on the Munson data (IEEE Data Base 1.2.2), and an overall error rate of 9.4 percent was achieved without any statistical optimization. A characteristic property of this approach is the existence of two steps: the first step (primitive feature generation) is primarily numerical, and the second step (feature selection and classification) makes extensive use of semantics.

135 citations

Journal ArticleDOI
TL;DR: Topological characterizations of sets of graphs which can be generated by contextfree or linear grammars are given and it is shown that the set of all planar graphs cannot be generate by a context-free grammar while theset of all outerplanar graphs can.
Abstract: Topological characterizations of sets of graphs which can be generated by contextfree or linear grammars are given. It is shown, for example, that the set of all planar graphs cannot be generated by a context-free grammar while the set of all outerplanar graphs can

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Abstract: The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

6,527 citations

Journal ArticleDOI
TL;DR: An efficient segmentation algorithm is developed based on a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image and it is shown that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties.
Abstract: This paper addresses the problem of segmenting an image into regions. We define a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image. We then develop an efficient segmentation algorithm based on this predicate, and show that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties. We apply the algorithm to image segmentation using two different kinds of local neighborhoods in constructing the graph, and illustrate the results with both real and synthetic images. The algorithm runs in time nearly linear in the number of graph edges and is also fast in practice. An important characteristic of the method is its ability to preserve detail in low-variability image regions while ignoring detail in high-variability regions.

5,791 citations

Journal ArticleDOI
TL;DR: A new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains, and implements a function tau(G,n) isin IRm that maps a graph G and one of its nodes n into an m-dimensional Euclidean space.
Abstract: Many underlying relationships among data in several areas of science and engineering, e.g., computer vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs. In this paper, we propose a new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains. This GNN model, which can directly process most of the practically useful types of graphs, e.g., acyclic, cyclic, directed, and undirected, implements a function tau(G,n) isin IRm that maps a graph G and one of its nodes n into an m-dimensional Euclidean space. A supervised learning algorithm is derived to estimate the parameters of the proposed GNN model. The computational cost of the proposed algorithm is also considered. Some experimental results are shown to validate the proposed learning algorithm, and to demonstrate its generalization capabilities.

5,701 citations

Journal ArticleDOI
TL;DR: A common theoretical framework for combining classifiers which use distinct pattern representations is developed and it is shown that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision.
Abstract: We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental comparison of various classifier combination schemes demonstrates that the combination rule developed under the most restrictive assumptions-the sum rule-outperforms other classifier combinations schemes. A sensitivity analysis of the various schemes to estimation errors is carried out to show that this finding can be justified theoretically.

5,670 citations

Journal ArticleDOI
TL;DR: This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied, and establishing a framework for understanding the merits and relationships between the wide variety of existing techniques.
Abstract: Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors, or from different viewpoints. Virtually all large systems which evaluate images require the registration of images, or a closely related operation, as an intermediate step. Specific examples of systems where image registration is a significant component include matching a target with a real-time image of a scene for target recognition, monitoring global land usage using satellite images, matching stereo images to recover shape for autonomous navigation, and aligning images from different medical modalities for diagnosis.Over the years, a broad range of techniques has been developed for various types of data and problems. These techniques have been independently studied for several different applications, resulting in a large body of research. This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied. Three major types of variations are distinguished. The first type are the variations due to the differences in acquisition which cause the images to be misaligned. To register images, a spatial transformation is found which will remove these variations. The class of transformations which must be searched to find the optimal transformation is determined by knowledge about the variations of this type. The transformation class in turn influences the general technique that should be taken. The second type of variations are those which are also due to differences in acquisition, but cannot be modeled easily such as lighting and atmospheric conditions. This type usually effects intensity values, but they may also be spatial, such as perspective distortions. The third type of variations are differences in the images that are of interest such as object movements, growths, or other scene changes. Variations of the second and third type are not directly removed by registration, but they make registration more difficult since an exact match is no longer possible. In particular, it is critical that variations of the third type are not removed. Knowledge about the characteristics of each type of variation effect the choice of feature space, similarity measure, search space, and search strategy which will make up the final technique. All registration techniques can be viewed as different combinations of these choices. This framework is useful for understanding the merits and relationships between the wide variety of existing techniques and for assisting in the selection of the most suitable technique for a specific problem.

4,769 citations