scispace - formally typeset
Search or ask a question
Author

Théophile Ohlmann

Bio: Théophile Ohlmann is an academic researcher from École normale supérieure de Lyon. The author has contributed to research in topics: Internal ribosome entry site & Translation (biology). The author has an hindex of 30, co-authored 73 publications receiving 3509 citations. Previous affiliations of Théophile Ohlmann include University of Lyon & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: The formal identification of viral selenoproteins in the genome of molluscum contagiosum and fowlpox viruses demonstrated the importance of selenocsteine in viral cycle.
Abstract: Reactive oxygen species (ROS) are frequently produced during viral infections. Generation of these ROS can be both beneficial and detrimental for many cellular functions. When overwhelming the antioxidant defense system, the excess of ROS induces oxidative stress. Viral infections lead to diseases characterized by a broad spectrum of clinical symptoms, with oxidative stress being one of their hallmarks. In many cases, ROS can, in turn, enhance viral replication leading to an amplification loop. Another important parameter for viral replication and pathogenicity is the nutritional status of the host. Viral infection simultaneously increases the demand for micronutrients and causes their loss, which leads to a deficiency that can be compensated by micronutrient supplementation. Among the nutrients implicated in viral infection, selenium (Se) has an important role in antioxidant defense, redox signaling and redox homeostasis. Most of biological activities of selenium is performed through its incorporation as a rare amino acid selenocysteine in the essential family of selenoproteins. Selenium deficiency, which is the main regulator of selenoprotein expression, has been associated with the pathogenicity of several viruses. In addition, several selenoprotein members, including glutathione peroxidases (GPX), thioredoxin reductases (TXNRD) seemed important in different models of viral replication. Finally, the formal identification of viral selenoproteins in the genome of molluscum contagiosum and fowlpox viruses demonstrated the importance of selenoproteins in viral cycle.

297 citations

Journal ArticleDOI
TL;DR: It is concluded that the absence of AURKC causes male infertility owing to the production of large-headed multiflagellar polyploid spermatozoa.
Abstract: The World Health Organization conservatively estimates that 80 million people suffer from infertility worldwide. Male factors are believed to be responsible for 20-50% of all infertility cases, but microdeletions of the Y chromosome are the only genetic defects altering human spermatogenesis that have been reported repeatedly. We focused our work on infertile men with a normal somatic karyotype but typical spermatozoa mainly characterized by large heads, a variable number of tails and an increased chromosomal content (OMIM 243060). We performed a genome-wide microsatellite scan on ten infertile men presenting this characteristic phenotype. In all of these men, we identified a common region of homozygosity harboring the aurora kinase C gene (AURKC) with a single nucleotide deletion in the AURKC coding sequence. In addition, we show that this founder mutation results in premature termination of translation, yielding a truncated protein that lacks the kinase domain. We conclude that the absence of AURKC causes male infertility owing to the production of large-headed multiflagellar polyploid spermatozoa.

255 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the requirement for DDX3 is highly specific to some selected transcripts, cannot be replaced or substituted by eIF4A and is only needed in the very early steps of ribosome binding and prior to 43S ribosomal scanning, defining an unprecedented role for a DEAD‐box RNA helicase in translation initiation.
Abstract: Here, we have characterized a step in translation initiation of viral and cellular mRNAs that contain RNA secondary structures immediately at the vicinity of their m7GTP cap. This is mediated by the DEAD-box helicase DDX3 which can directly bind to the 5′ of the target mRNA where it clamps the entry of eIF4F through an eIF4G and Poly A-binding protein cytoplasmic 1 (PABP) double interaction. This could induce limited local strand separation of the secondary structure to allow 43S pre-initiation complex attachment to the 5′ free extremity of the mRNA. We further demonstrate that the requirement for DDX3 is highly specific to some selected transcripts, cannot be replaced or substituted by eIF4A and is only needed in the very early steps of ribosome binding and prior to 43S ribosomal scanning. Altogether, these data define an unprecedented role for a DEAD-box RNA helicase in translation initiation.

234 citations

Journal ArticleDOI
TL;DR: It is demonstrated that translation of uncapped mRNAs normally exhibits a strong requirement for EIF4F, but this dependence is abolished when eIF4G is cleaved, with the Ct domain capable of supporting translation in the absence of the Nt domain.
Abstract: The foot and mouth disease virus, a picornavirus, encodes two forms of a cysteine proteinase (leader or L protease) that bisects the eIF4G polypeptide of the initiation factor complex eIF4F into N-terminal (N(t)) and C-terminal (C(t)) domains. Previously we showed that, although in vitro cleavage of the translation initiation factor, eIF4G, with L protease decreases cap-dependent translation, the cleavage products themselves may directly promote cap-independent protein synthesis. We now demonstrate that translation of uncapped mRNAs normally exhibits a strong requirement for eIF4E. However, this dependence is abolished when eIF4G is cleaved, with the C(t) domain capable of supporting translation in the absence of the N(t) domain. In contrast, the efficient translation of the second cistron of bicistronic mRNAs, directed by two distinct Internal Ribosome Entry Segments (IRES), exhibits no requirement for eIF4E but is dependent upon either intact eIF4G or the C(t) domain. These results demonstrate that: (i) the apparent requirement for eIF4F for internal initiation on IRES-driven mRNAs can be fulfilled by the C(t) proteolytic cleavage product; (ii) when eIF4G is cleaved, the C(t) domain can also support cap-independent translation of cellular mRNAs not possessing an IRES element, in the absence of eIF4E; and (iii) when eIF4G is intact, translation of cellular mRNAs, whether capped or uncapped, is strictly dependent upon eIF4E. These data complement recent work in other laboratories defining the binding sites for other initiation factors on the eIF4G molecule.

225 citations

Journal ArticleDOI
TL;DR: The role of eif4G and protein partners as well as the cellular and viral events that modulate eIF4G activity in the initiation of translation are reviewed.

207 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe principles of miRNA-mRNA interactions and proteins that interact with miRNAs and function in miRNA mediated repression, and discuss the multiple, often contradictory, mechanisms that miRNA have been reported to use, which cause translational repression and mRNA decay.
Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that extensively regulate gene expression in animals, plants, and protozoa. miRNAs function posttranscriptionally by usually base-pairing to the mRNA 3′-untranslated regions to repress protein synthesis by mechanisms that are not fully understood. In this review, we describe principles of miRNA-mRNA interactions and proteins that interact with miRNAs and function in miRNA-mediated repression. We discuss the multiple, often contradictory, mechanisms that miRNAs have been reported to use, which cause translational repression and mRNA decay. We also address the issue of cellular localization of miRNA-mediated events and a role for RNA-binding proteins in activation or relief of miRNA repression.

2,762 citations

Journal ArticleDOI
TL;DR: The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated and suggests that eif4F is also implicated in malignancy and apoptosis.
Abstract: ▪ Abstract Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5′ cap structure (eIF4E), delivery of an RNA helicase to the 5′ region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiat...

2,122 citations

Journal ArticleDOI
TL;DR: Understanding of the mechanisms of silencing is enhanced, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5′-to-3′ degradation.
Abstract: MicroRNAs (miRNAs) are a conserved class of small non-coding RNAs that assemble with Argonaute proteins into miRNA-induced silencing complexes (miRISCs) to direct post-transcriptional silencing of complementary mRNA targets. Silencing is accomplished through a combination of translational repression and mRNA destabilization, with the latter contributing to most of the steady-state repression in animal cell cultures. Degradation of the mRNA target is initiated by deadenylation, which is followed by decapping and 5'-to-3' exonucleolytic decay. Recent work has enhanced our understanding of the mechanisms of silencing, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5'-to-3' degradation. Furthermore, an intricate interplay between translational repression and mRNA degradation is emerging.

1,441 citations

Journal Article
01 Jan 2004-Nature
TL;DR: In this article, S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation, but on a high fat diet, levels of glucose and free fatty acids still rise in S6k1-dependent mice, resulting in insulin receptor desensitization.
Abstract: Elucidating the signalling mechanisms by which obesity leads to impaired insulin action is critical in the development of therapeutic strategies for the treatment of diabetes. Recently, mice deficient for S6 Kinase 1 (S6K1), an effector of the mammalian target of rapamycin (mTOR) that acts to integrate nutrient and insulin signals, were shown to be hypoinsulinaemic, glucose intolerant and have reduced β-cell mass. However, S6K1-deficient mice maintain normal glucose levels during fasting, suggesting hypersensitivity to insulin, raising the question of their metabolic fate as a function of age and diet. Here, we report that S6K1-deficient mice are protected against obesity owing to enhanced β-oxidation. However on a high fat diet, levels of glucose and free fatty acids still rise in S6K1-deficient mice, resulting in insulin receptor desensitization. Nevertheless, S6K1-deficient mice remain sensitive to insulin owing to the apparent loss of a negative feedback loop from S6K1 to insulin receptor substrate 1 (IRS1), which blunts S307 and S636/S639 phosphorylation; sites involved in insulin resistance. Moreover, wild-type mice on a high fat diet as well as K/K Ay and ob/ob (also known as Lep/Lep) micetwo genetic models of obesityhave markedly elevated S6K1 activity and, unlike S6K1-deficient mice, increased phosphorylation of IRS1 S307 and S636/S639. Thus under conditions of nutrient satiation S6K1 negatively regulates insulin signalling.

1,408 citations

01 Jan 2010
TL;DR: It is found that women over 50 are more likely to have a family history of diabetes, especially if they are obese, than women under the age of 50.
Abstract: Hypertension 66 (20.3%) 24 (24.2%) 30 (16.3%) NS Diabetes 20 (6.2%) 7 (7.1%) 10 (5.4%) NS Excess weight 78 (24%) 27 (27.3%) 44 (23.9%) NS Smokers 64 (19.7%) 17 (17.2%) 35 (19.0%) NS Age >50 years 137 (42.2%) 54 (54.5%) 67 (36.4%) <0.02 Kidney disease 7 (2.2%) 1 (1%) 5 (2.7%) NS Family history, DM 102 (31.4%) 28 (28.3%) 66 (35.9%) NS

1,369 citations