scispace - formally typeset
Search or ask a question
Author

Theresa A. McHugh

Bio: Theresa A. McHugh is an academic researcher from Northern Arizona University. The author has contributed to research in topics: Arid & Soil water. The author has an hindex of 15, co-authored 19 publications receiving 682 citations. Previous affiliations of Theresa A. McHugh include United States Geological Survey & Colorado Mesa University.
Topics: Arid, Soil water, Water content, Ecosystem, Moisture

Papers
More filters
Journal ArticleDOI
TL;DR: qSIP is demonstrated using soil incubations, in which soil bacteria exhibited strong taxonomic variations in 18O and 13C composition after exposure to [18O]water or [13C]glucose, demonstrating the benefit of a quantitative approach to stable isotope probing.
Abstract: Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing.

190 citations

Journal ArticleDOI
TL;DR: Advanced stable isotope probing with 13C and 18O is used to show that evolutionary history has ecological significance for in situ bacterial activity and sets the stage for characterizing the functional attributes of bacterial taxonomic groups.
Abstract: Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism's ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions.

108 citations

Journal ArticleDOI
TL;DR: It is shown that increased decomposition of soil C in response to added glucose (positive priming) occurs as a phylogenetically diverse group of taxa, accounting for a large proportion of the bacterial community, shift toward additional soil C use for growth.
Abstract: Microorganisms perform most decomposition on Earth, mediating carbon (C) loss from ecosystems, and thereby influencing climate. Yet, how variation in the identity and composition of microbial communities influences ecosystem C balance is far from clear. Using quantitative stable isotope probing of DNA, we show how individual bacterial taxa influence soil C cycling following the addition of labile C (glucose). Specifically, we show that increased decomposition of soil C in response to added glucose (positive priming) occurs as a phylogenetically diverse group of taxa, accounting for a large proportion of the bacterial community, shift toward additional soil C use for growth. Our findings suggest that many microbial taxa exhibit C use plasticity, as most taxa altered their use of glucose and soil organic matter depending upon environmental conditions. In contrast, bacteria that exhibit other responses to glucose (reduced growth or reliance on glucose for additional growth) clustered strongly by phylogeny. These results suggest that positive priming is likely the prototypical response of bacteria to sustained labile C addition, consistent with the widespread occurrence of the positive priming effect in nature.

99 citations

Journal ArticleDOI
TL;DR: In this paper, water vapor adsorption in arid and semi-arid lands was studied and the authors found that the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems.
Abstract: Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.

80 citations

Journal ArticleDOI
TL;DR: This work uses isotope incorporation within DNA molecules to model taxonspecific population growth in the presence of O-labeled water and applies this model to phylogenetic marker sequencing data collected from stable-isotope probing studies to estimate rates of growth, mortality, and turnover for individual microbial populations within soil assemblages.
Abstract: Understanding how population-level dynamics contribute to ecosystem-level processes is a primary focus of ecological research and has led to important breakthroughs in the ecology of macroscopic organisms. However, the inability to measure population-specific rates, such as growth, for microbial taxa within natural assemblages has limited ecologists’ understanding of how microbial populations interact to regulate ecosystem processes. Here, we use isotope incorporation within DNA molecules to model taxonspecific population growth in the presence of O-labeled water. By applying this model to phylogenetic marker sequencing data collected from stable-isotope probing studies, we estimate rates of growth, mortality, and turnover for individual microbial populations within soil assemblages. When summed across the entire bacterial community, our taxon-specific estimates are within the range of other whole-assemblage measurements of bacterial turnover. Because it can be applied to environmental samples, the approach we present is broadly applicable to measuring population growth, mortality, and associated biogeochemical process rates of microbial taxa for a wide range of ecosystems and can help reveal how individual microbial populations drive biogeochemical fluxes.

71 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Although most soil microorganisms remain undescribed, the field is now poised to identify how to manipulate and manage the soil microbiome to increase soil fertility, improve crop production and improve the understanding of how terrestrial ecosystems will respond to environmental change.
Abstract: Soil microorganisms are clearly a key component of both natural and managed ecosystems. Despite the challenges of surviving in soil, a gram of soil can contain thousands of individual microbial taxa, including viruses and members of all three domains of life. Recent advances in marker gene, genomic and metagenomic analyses have greatly expanded our ability to characterize the soil microbiome and identify the factors that shape soil microbial communities across space and time. However, although most soil microorganisms remain undescribed, we can begin to categorize soil microorganisms on the basis of their ecological strategies. This is an approach that should prove fruitful for leveraging genomic information to predict the functional attributes of individual taxa. The field is now poised to identify how we can manipulate and manage the soil microbiome to increase soil fertility, improve crop production and improve our understanding of how terrestrial ecosystems will respond to environmental change.

1,720 citations

Journal ArticleDOI
TL;DR: The current state of knowledge about the impacts of climate change on soil microorganisms in different climate-sensitive soil ecosystems, as well as potential ways that soil micro organisms can be harnessed to help mitigate the negative consequences of climatechange are explored.
Abstract: The soil microbiome governs biogeochemical cycling of macronutrients, micronutrients and other elements vital for the growth of plants and animal life. Understanding and predicting the impact of climate change on soil microbiomes and the ecosystem services they provide present a grand challenge and major opportunity as we direct our research efforts towards one of the most pressing problems facing our planet. In this Review, we explore the current state of knowledge about the impacts of climate change on soil microorganisms in different climate-sensitive soil ecosystems, as well as potential ways that soil microorganisms can be harnessed to help mitigate the negative consequences of climate change. In this Review, Jansson and Hofmockel explore the impacts of climate change on soil microorganisms in different climate-sensitive soil ecosystems and the potential ways that soil microorganisms can be harnessed to help mitigate the negative consequences of climate change.

545 citations

Journal ArticleDOI
TL;DR: In most cases, plant-associated microorganisms had a beneficial effect on plants under elevated CO(2), and numerous studies indicated that plant growth-promoting microorganisms positively affected plants subjected to drought stress.

478 citations

Journal ArticleDOI
TL;DR: The literature search showed inconsistency in the community response of proposed copiotrophic- and oligotrophic-associated microorganisms (phyla level) to changing environmental conditions, which suggests that tracking microorganisms at finer phylogenetic and taxonomic resolution (e.g. family level or lower) may be more effective to capture changes in community response and/or that edaphic factors exert a stronger effect incommunity response.

426 citations

Journal ArticleDOI
TL;DR: The understanding of these processes can be only achieved by the exploration of the complex 'ecosystem microbiome' and its functioning using focused, integrative microbiological and ecological research performed across multiple habitats.
Abstract: Globally, forests represent highly productive ecosystems that act as carbon sinks where soil organic matter is formed from residuals after biomass decomposition as well as from rhizodeposited carbon. Forests exhibit a high level of spatial heterogeneity and the importance of trees, the dominant primary producers, for their structure and functioning. Fungi, bacteria and archaea inhabit various forest habitats: foliage, the wood of living trees, the bark surface, ground vegetation, roots and the rhizosphere, litter, soil, deadwood, rock surfaces, invertebrates, wetlands or the atmosphere, each of which has its own specific features, such as nutrient availability or temporal dynamicy and specific drivers that affect microbial abundance, the level of dominance of bacteria or fungi as well as the composition of their communities. However, several microorganisms, and in particular fungi, inhabit or even connect multiple habitats, and most ecosystem processes affect multiple habitats. Forests are dynamic on a broad temporal scale with processes ranging from short-term events over seasonal ecosystem dynamics to long-term stand development after disturbances such as fires or insect outbreaks. The understanding of these processes can be only achieved by the exploration of the complex 'ecosystem microbiome' and its functioning using focused, integrative microbiological and ecological research performed across multiple habitats.

399 citations