scispace - formally typeset
Search or ask a question
Author

Thibaut Crépin

Bio: Thibaut Crépin is an academic researcher from University of Grenoble. The author has contributed to research in topics: RNA & Polymerase. The author has an hindex of 22, co-authored 45 publications receiving 3478 citations. Previous affiliations of Thibaut Crépin include Centre national de la recherche scientifique & Commissariat à l'énergie atomique et aux énergies alternatives.

Papers
More filters
Journal ArticleDOI
16 Apr 2009-Nature
TL;DR: In this paper, the amino-terminal 209 residues of the PA subunit contain the active site of the endonuclease active site, which is shown to be strongly activated by manganese ions, matching observations reported for the intact trimeric polymerase.
Abstract: The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.

715 citations

Journal ArticleDOI
22 Jun 2007-Science
TL;DR: The broad-spectrum antifungal 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), in development for the treatment of onychomycosis, inhibits yeast cytoplasmic leucyl-tRNA synthetase by formation of a stable tRNALeu-AN 2690 adduct in the editing site of the enzyme.
Abstract: Aminoacyl-transfer RNA (tRNA) synthetases, which catalyze the attachment of the correct amino acid to its corresponding tRNA during translation of the genetic code, are proven antimicrobial drug targets. We show that the broad-spectrum antifungal 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), in development for the treatment of onychomycosis, inhibits yeast cytoplasmic leucyl-tRNA synthetase by formation of a stable tRNA(Leu)-AN2690 adduct in the editing site of the enzyme. Adduct formation is mediated through the boron atom of AN2690 and the 2'- and 3'-oxygen atoms of tRNA's3'-terminal adenosine. The trapping of enzyme-bound tRNA(Leu) in the editing site prevents catalytic turnover, thus inhibiting synthesis of leucyl-tRNA(Leu) and consequentially blocking protein synthesis. This result establishes the editing site as a bona fide target for aminoacyl-tRNA synthetase inhibitors.

544 citations

Journal ArticleDOI
TL;DR: Binding and functional studies with point mutants confirm that the identified site is essential for cap binding in vitro and cap-dependent transcription in vivo by the trimeric polymerase complex, and will allow efficient structure-based design of new anti-influenza compounds inhibiting viral transcription.
Abstract: Influenza virus mRNAs are synthesized by the trimeric viral polymerase using short capped primers obtained by a 'cap-snatching' mechanism. The polymerase PB2 subunit binds the 5' cap of host pre-mRNAs, which are cleaved after 10-13 nucleotides by the PB1 subunit. Using a library-screening method, we identified an independently folded domain of PB2 that has specific cap binding activity. The X-ray structure of the domain with bound cap analog m(7)GTP at 2.3-A resolution reveals a previously unknown fold and a mode of ligand binding that is similar to, but distinct from, other cap binding proteins. Binding and functional studies with point mutants confirm that the identified site is essential for cap binding in vitro and cap-dependent transcription in vivo by the trimeric polymerase complex. These findings clarify the nature of the cap binding site in PB2 and will allow efficient structure-based design of new anti-influenza compounds inhibiting viral transcription.

467 citations

Journal ArticleDOI
18 Dec 2014-Nature
TL;DR: Crystal structures of bat influenza A and human influenza B polymerases (FluA and FluB), bound to the viral RNA promoter, are used to give mechanistic insight into these distinct processes.
Abstract: Influenza virus polymerase uses a capped primer, derived by 'cap-snatching' from host pre-messenger RNA, to transcribe its RNA genome into mRNA and a stuttering mechanism to generate the poly(A) tail. By contrast, genome replication is unprimed and generates exact full-length copies of the template. Here we use crystal structures of bat influenza A and human influenza B polymerases (FluA and FluB), bound to the viral RNA promoter, to give mechanistic insight into these distinct processes. In the FluA structure, a loop analogous to the priming loop of flavivirus polymerases suggests that influenza could initiate unprimed template replication by a similar mechanism. Comparing the FluA and FluB structures suggests that cap-snatching involves in situ rotation of the PB2 cap-binding domain to direct the capped primer first towards the endonuclease and then into the polymerase active site. The polymerase probably undergoes considerable conformational changes to convert the observed pre-initiation state into the active initiation and elongation states.

370 citations

Journal ArticleDOI
TL;DR: A hallmark of negative-strand RNA viruses is that their genomes never exist as free RNA, but instead are always assembled with many copies of a single nucleoprotein (N) to form highly stable nucleocapsids.

205 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The global situation of antibiotic resistance, its major causes and consequences, and key areas in which action is urgently needed are described and identified.
Abstract: The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.

3,181 citations

Journal ArticleDOI
18 Jun 2009-Nature
TL;DR: Efforts to control these outbreaks and real-time monitoring of the evolution of this virus should provide invaluable information to direct infectious disease control programmes and to improve understanding of the factors that determine viral pathogenicity and/or transmissibility.
Abstract: Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. A prime example is the recent emergence of swine-origin H1N1 viruses that have transmitted to and spread among humans, resulting in outbreaks internationally. Efforts to control these outbreaks and real-time monitoring of the evolution of this virus should provide us with invaluable information to direct infectious disease control programmes and to improve understanding of the factors that determine viral pathogenicity and/or transmissibility.

1,477 citations

Journal ArticleDOI
28 Aug 2014
TL;DR: In this review the factors that have been linked to the waxing of bacterial resistance are addressed and profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated.
Abstract: Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.

1,467 citations

Journal ArticleDOI
TL;DR: Strategies to re-establish viable platforms for antibiotic discovery include investigating untapped natural product sources such as uncultured bacteria, establishing rules of compound penetration to enable the development of synthetic antibiotics, developing species-specific antibiotics and identifying prodrugs that have the potential to eradicate dormant persisters, which are often responsible for hard-to-treat infections.
Abstract: The spread of resistant bacteria, leading to untreatable infections, is a major public health threat but the pace of antibiotic discovery to combat these pathogens has slowed down. Most antibiotics were originally isolated by screening soil-derived actinomycetes during the golden era of antibiotic discovery in the 1940s to 1960s. However, diminishing returns from this discovery platform led to its collapse, and efforts to create a new platform based on target-focused screening of large libraries of synthetic compounds failed, in part owing to the lack of penetration of such compounds through the bacterial envelope. This article considers strategies to re-establish viable platforms for antibiotic discovery. These include investigating untapped natural product sources such as uncultured bacteria, establishing rules of compound penetration to enable the development of synthetic antibiotics, developing species-specific antibiotics and identifying prodrugs that have the potential to eradicate dormant persisters, which are often responsible for hard-to-treat infections.

1,221 citations