scispace - formally typeset
Search or ask a question
Author

Thiemo Voigt

Bio: Thiemo Voigt is an academic researcher from Uppsala University. The author has contributed to research in topics: Wireless sensor network & Key distribution in wireless sensor networks. The author has an hindex of 52, co-authored 338 publications receiving 16036 citations. Previous affiliations of Thiemo Voigt include Research Institutes of Sweden & Swedish Institute of Computer Science.


Papers
More filters
Proceedings ArticleDOI
16 Nov 2004
TL;DR: This work presents Contiki, a lightweight operating system with support for dynamic loading and replacement of individual programs and services, built around an event-driven kernel but provides optional preemptive multithreading that can be applied to individual processes.
Abstract: Wireless sensor networks are composed of large numbers of tiny networked devices that communicate untethered. For large scale networks, it is important to be able to download code into the network dynamically. We present Contiki, a lightweight operating system with support for dynamic loading and replacement of individual programs and services. Contiki is built around an event-driven kernel but provides optional preemptive multithreading that can be applied to individual processes. We show that dynamic loading and unloading is feasible in a resource constrained environment, while keeping the base system lightweight and compact.

2,566 citations

Proceedings Article
01 Jan 2004
TL;DR: In this paper, the authors describe how to dynamically download code into large scale wireless sensor networks, which are composed of large numbers of tiny networked devices that communicate untethered.
Abstract: Wireless sensor networks are composed of large numbers of tiny networked devices that communicate untethered. For large scale networks it is important to be able to dynamically download code into t ...

2,522 citations

Proceedings ArticleDOI
14 Nov 2006
TL;DR: This work proposes cross-level simulation, a novel type of wireless sensor network simulation that enables holistic simultaneous simulation at different levels, and presents an implementation of such a simulator, COOJA, a simulator for the Contiki sensor node operating system.
Abstract: Simulators for wireless sensor networks are a valuable tool for system development. However, current simulators can only simulate a single level of a system at once. This makes system development and evolution difficult since developers cannot use the same simulator for both high-level algorithm development and low-level development such as device-driver implementations. We propose cross-level simulation, a novel type of wireless sensor network simulation that enables holistic simultaneous simulation at different levels. We present an implementation of such a simulator, COOJA, a simulator for the Contiki sensor node operating system. COOJA allows for simultaneous simulation at the network level, the operating system level, and the machine code instruction set level. With COOJA, we show the feasibility of the cross-level simulation approach.

1,042 citations

Journal ArticleDOI
01 Nov 2013
TL;DR: This paper design, implement, and evaluate a novel intrusion detection system for the IoT that is primarily target routing attacks such as spoofed or altered information, sinkhole, and selective-forwarding, but can be extended to detect other attacks.
Abstract: In the Internet of Things (IoT), resource-constrained things are connected to the unreliable and untrusted Internet via IPv6 and 6LoWPAN networks. Even when they are secured with encryption and authentication, these things are exposed both to wireless attacks from inside the 6LoWPAN network and from the Internet. Since these attacks may succeed, Intrusion Detection Systems (IDS) are necessary. Currently, there are no IDSs that meet the requirements of the IPv6-connected IoT since the available approaches are either customized for Wireless Sensor Networks (WSN) or for the conventional Internet. In this paper we design, implement, and evaluate a novel intrusion detection system for the IoT that we call SVELTE. In our implementation and evaluation we primarily target routing attacks such as spoofed or altered information, sinkhole, and selective-forwarding. However, our approach can be extended to detect other attacks. We implement SVELTE in the Contiki OS and thoroughly evaluate it. Our evaluation shows that in the simulated scenarios, SVELTE detects all malicious nodes that launch our implemented sinkhole and/or selective forwarding attacks. However, the true positive rate is not 100%, i.e., we have some false alarms during the detection of malicious nodes. Also, SVELTE's overhead is small enough to deploy it on constrained nodes with limited energy and memory capacity.

741 citations

Proceedings ArticleDOI
13 Nov 2016
TL;DR: This paper develops models describing LoRa communication behaviour and uses these models to parameterise a LoRa simulation to study scalability, showing that a typical smart city deployment can support 120 nodes per 3.8 ha, which is not sufficient for future IoT deployments.
Abstract: New Internet of Things (IoT) technologies such as Long Range (LoRa) are emerging which enable power efficient wireless communication over very long distances. Devices typically communicate directly to a sink node which removes the need of constructing and maintaining a complex multi-hop network. Given the fact that a wide area is covered and that all devices communicate directly to a few sink nodes a large number of nodes have to share the communication medium. LoRa provides for this reason a range of communication options (centre frequency, spreading factor, bandwidth, coding rates) from which a transmitter can choose. Many combination settings are orthogonal and provide simultaneous collision free communications. Nevertheless, there is a limit regarding the number of transmitters a LoRa system can support. In this paper we investigate the capacity limits of LoRa networks. Using experiments we develop models describing LoRa communication behaviour. We use these models to parameterise a LoRa simulation to study scalability. Our experiments show that a typical smart city deployment can support 120 nodes per 3.8 ha, which is not sufficient for future IoT deployments. LoRa networks can scale quite well, however, if they use dynamic communication parameter selection and/or multiple sinks.

593 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

01 Jan 2016
TL;DR: This paper critically analyzes the deployment issues of best three proposals considering trade-off between security functions and performance overhead and concludes that none of them is deployable in practical scenario.
Abstract: Border Gateway Protocol (BGP) is the protocol backing the core routing decisions on the Internet. It maintains a table of IP networks or 'prefixes' which designate network reachability among autonomous systems (AS). Point of concern in BGP is its lack of effective security measures which makes Internet vulnerable to different forms of attacks. Many solutions have been proposed till date to combat BGP security issues but not a single one is deployable in practical scenario. Any security proposal with optimal solution should offer adequate security functions, performance overhead and deployment cost. This paper critically analyzes the deployment issues of best three proposals considering trade-off between security functions and performance overhead.

2,691 citations

Journal ArticleDOI
TL;DR: Existing solutions and open research issues at the application, transport, network, link, and physical layers of the communication protocol stack are investigated, along with possible cross-layer synergies and optimizations.

2,311 citations

Journal ArticleDOI
TL;DR: Various aspects of energy harvesting sensor systems- architecture, energy sources and storage technologies and examples of harvesting-based nodes and applications are surveyed and the implications of recharge opportunities on sensor node operation and design of sensor network solutions are discussed.
Abstract: Sensor networks with battery-powered nodes can seldom simultaneously meet the design goals of lifetime, cost, sensing reliability and sensing and transmission coverage. Energy-harvesting, converting ambient energy to electrical energy, has emerged as an alternative to power sensor nodes. By exploiting recharge opportunities and tuning performance parameters based on current and expected energy levels, energy harvesting sensor nodes have the potential to address the conflicting design goals of lifetime and performance. This paper surveys various aspects of energy harvesting sensor systems- architecture, energy sources and storage technologies and examples of harvesting-based nodes and applications. The study also discusses the implications of recharge opportunities on sensor node operation and design of sensor network solutions.

1,870 citations