scispace - formally typeset
Search or ask a question
Author

Thierry Candresse

Bio: Thierry Candresse is an academic researcher from University of Bordeaux. The author has contributed to research in topics: Plant virus & European union. The author has an hindex of 59, co-authored 403 publications receiving 11833 citations. Previous affiliations of Thierry Candresse include Universidade Federal de Viçosa & Institut national de la recherche agronomique.


Papers
More filters
Journal ArticleDOI
TL;DR: A short review on each virus of the Top 10 list and its importance is presented, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top10.
Abstract: Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.

842 citations

Journal ArticleDOI
TL;DR: The new plant virus family Flexiviridae is described, named because its members have flexuous virions and it includes the existing genera Allexivirus, Capillovirus, Carlav virus, Foveavirus, Potexvirus, Trichovirus and Vitivirus plus the new genus Mandarivirus together with some related viruses not assigned to any genus.
Abstract: The new plant virus family Flexiviridae is described. The family is named because its members have flexuous virions and it includes the existing genera Allexivirus, Capillovirus, Carlavirus, Foveavirus, Potexvirus, Trichovirus and Vitivirus, plus the new genus Mandarivirus together with some related viruses not assigned to any genus. The family is justified from phylogenetic analyses of the polymerase and coat protein (CP) sequences. To help to define suitable molecular criteria for demarcation of species, a complete set of pairwise comparisons was made using the nucleotide (nt) and amino acid (aa) sequences of each fully-sequenced gene from every available accession in the family. Based on the distributions and on inspection of the data, it was concluded that, as a general rule, distinct species have less than ca. 72% identical nt or 80% identical aa between their entire CP or replication protein genes.

388 citations

Journal ArticleDOI
TL;DR: A highly sensitive assay, based on polymerase chain reaction amplification of cDNA synthesized from the viral RNA of antibody-captured viral particles, has been developed for plum pox potyvirus (PPV) detection.

327 citations

Journal ArticleDOI
TL;DR: A sensitive, polyvalent assay based on the polymerase chain reaction (PCR) was developed for plum pox potyvirus (PPV) detection and proved to be more sensitive than molecular hybridization using 32P-labelled RNA probes for PPV detection.

279 citations

Journal ArticleDOI
TL;DR: The eIF4E and eIF(iso)4E cDNAs from several genotypes of lettuce (Lactuca sativa) that are susceptible, tolerant, or resistant to infection by Lettuce mosaic virus (LMV; genus Potyvirus) were cloned and sequenced.
Abstract: The eIF4E and eIF(iso)4E cDNAs from several genotypes of lettuce (Lactuca sativa) that are susceptible, tolerant, or resistant to infection by Lettuce mosaic virus (LMV; genus Potyvirus) were cloned and sequenced. Although Ls-eIF(iso)4E was monomorphic in sequence, three types of Ls-eIF4E differed by point sequence variations, and a short in-frame deletion in one of them. The amino acid variations specific to Ls-eIF4E(1) and Ls-eIF4E(2) were predicted to be located near the cap recognition pocket in a homology-based tridimensional protein model. In 19 lettuce genotypes, including two near-isogenic pairs, there was a strict correlation between these three allelic types and the presence or absence of the recessive LMV resistance genes mo1(1) and mo1(2). Ls-eIF4E(1) and mo1(1) cosegregated in the progeny of two separate crosses between susceptible genotypes and an mo1(1) genotype. Finally, transient ectopic expression of Ls-eIF4E restored systemic accumulation of a green fluorescent protein-tagged LMV in LMV-resistant mo1(2) plants and a recombinant LMV expressing Ls-eIF4E degrees from its genome, but not Ls-eIF4E(1) or Ls-eIF(iso)4E, accumulated and produced symptoms in mo1(1) or mo1(2) genotypes. Therefore, sequence correlation, tight genetic linkage, and functional complementation strongly suggest that eIF4E plays a role in the LMV cycle in lettuce and that mo1(1) and mo1(2) are alleles coding for forms of eIF4E unable or less effective to fulfill this role. More generally, the isoforms of eIF4E appear to be host factors involved in the cycle of potyviruses in plants, probably through a general mechanism yet to be clarified.

277 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: A short resumé of each fungus in the Top 10 list and its importance is presented, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark.
Abstract: The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resume of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.

2,807 citations

BookDOI
01 Jan 1991
TL;DR: The results of the meetings of the International Committee on Taxonomy of Viruses, held in Madrid, September 1975, are briefly reported: rules of viral nomenclature, composition of the new Executive Committee, and a list of the names so far officially agreed.
Abstract: The results of the meetings of the International Committee on Taxonomy of Viruses, held in Madrid, September 1975, are briefly reported: rules of viral nomenclature, composition of the new Executive Committee, and a list of the names so far officially agreed. Introduction The International Committee on the Taxonomy of Viruses (ICTV), which is a committee of the Section on Virology of the International Association of Microbiological Societies (IAMS), completed a round of meetings during the Third International Congress for Virology that was held in Madrid from September 10--17, 1975. Since ICTV only meets during these conferences, which are held every four years, the meetings are important occasions for reviewing the classification and nomenclature of viruses. Decisions on new names, which encapsulate the recognition of natural "groups" of viruses, evolve slowly. Official approval for new names depends upon a series of sequential steps ; recommendations by one or more of the subcommittees of the Executive Committee of ICTV (subcommittees on Bacterial, Invertebrate, Plant and Vertebrate Viruses respectively, and for some of the larger viral groups which span several kinds of hos t s the Coordination Subcommittee), which are considered by the Executive Committee of ICTV and may finally be submitted for approval by ICTV itself. Only after this final approval does a name become "official". The results of the last five years of work by ICTV and its committees will be published early this year as a separate volume of "Intervirology", the official journal of the Section on Virology of IAMS, and additional copies will be produced for sale as separates. This "Second P~eport" will include, besides "approved" and common names of virus groups, a brief description of the properties of each

1,783 citations

Journal ArticleDOI
TL;DR: A survey of bacterial pathologists asked them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance, and a short section is presented on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community.
Abstract: Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10.

1,479 citations