scispace - formally typeset
Search or ask a question
Author

Thomas Bäck

Bio: Thomas Bäck is an academic researcher from Leiden University. The author has contributed to research in topics: Evolutionary algorithm & Evolutionary computation. The author has an hindex of 45, co-authored 366 publications receiving 20336 citations. Previous affiliations of Thomas Bäck include Xi'an Jiaotong University & Honda.


Papers
More filters
BookDOI
11 Jan 1996
TL;DR: Introduction PART I: A COMPARISON of EVOLUTIONARY ALGORITHMS 1. Organic Evolution and Problem Solving 2. Specific Evolutionary Algorithms 3. Artificial Landscapes 4. An Empirical Comparison 5. Selection 6. Mutation 7. An Experiment in Meta-Evolution
Abstract: Introduction PART I: A COMPARISON OF EVOLUTIONARY ALGORITHMS 1. Organic Evolution and Problem Solving 2. Specific Evolutionary Algorithms 3. Artificial Landscapes 4. An Empirical Comparison PART II: EXTENDING GENETIC ALGORITHMS 5. Selection 6. Mutation 7. An Experiment in Meta-Evolution Summary and Outlook Appendix A: Data for the Fletcher-Powell Function Appendix B: Data from Selection Experiments Appendix D: The Multiprocessor Environment Appendix E: Mathematical Symbols Bibliography Index

2,866 citations

Book
01 Jan 1996
TL;DR: In this work, the author compares the three most prominent representatives of evolutionary algorithms: genetic algorithms, evolution strategies, and evolutionary programming within a unified framework, thereby clarifying the similarities and differences of these methods.

2,679 citations

Book
01 Jan 1997
TL;DR: The Oxford University Press and the Institute of Physics have joined forces to create a major reference publication devoted to EC fundamentals, models, algorithms and applications, intended to become the standard reference resource for the evolutionary computation community.
Abstract: From the Publisher: Many scientists and engineers now use the paradigms of evolutionary computation (genetic agorithms, evolution strategies, evolutionary programming, genetic programming, classifier systems, and combinations or hybrids thereof) to tackle problems that are either intractable or unrealistically time consuming to solve through traditional computational strategies Recently there have been vigorous initiatives to promote cross-fertilization between the EC paradigms, and also to combine these paradigms with other approaches such as neural networks to create hybrid systems with enhanced capabilities To address the need for speedy dissemination of new ideas in these fields, and also to assist in cross-disciplinary communications and understanding, Oxford University Press and the Institute of Physics have joined forces to create a major reference publication devoted to EC fundamentals, models, algorithms and applications This work is intended to become the standard reference resource for the evolutionary computation community The Handbook of Evolutionary Computation will be available in loose-leaf print form, as well as in an electronic version that combines both CD-ROM and on-line (World Wide Web) acess to its contents Regularly published supplements will be available on a subscription basis

2,461 citations

Journal ArticleDOI
TL;DR: In this paper, three main streams of evolutionary algorithms (EAs), probabilistic optimization algorithms based on the model of natural evolution, are compared in a comparison with respect to certain characteristic components of EAs: the representation scheme of object variables, mutation, recombination and the selection operator.
Abstract: Three main streams of evolutionary algorithms (EAs), probabilistic optimization algorithms based on the model of natural evolution, are compared in this article: evolution strategies (ESs), evolutionary programming (EP), and genetic algorithms (GAs). The comparison is performed with respect to certain characteristic components of EAs: the representation scheme of object variables, mutation, recombination, and the selection operator. Furthermore, each algorithm is formulated in a high-level notation as an instance of the general, unifying basic algorithm, and the fundamental theoretical results on the algorithms are presented. Finally, after presenting experimental results for three test functions representing a unimodal and a multimodal case as well as a step function with discontinuities, similarities and differences of the algorithms are elaborated, and some hints to open research questions are sketched.

1,960 citations

Journal ArticleDOI
TL;DR: The purpose, the general structure, and the working principles of different approaches, including genetic algorithms (GA), evolution strategies (ES), and evolutionary programming (EP) are described by analysis and comparison of their most important constituents (i.e. representations, variation operators, reproduction, and selection mechanism).
Abstract: Evolutionary computation has started to receive significant attention during the last decade, although the origins can be traced back to the late 1950's. This article surveys the history as well as the current state of this rapidly growing field. We describe the purpose, the general structure, and the working principles of different approaches, including genetic algorithms (GA) (with links to genetic programming (GP) and classifier systems (CS)), evolution strategies (ES), and evolutionary programming (EP) by analysis and comparison of their most important constituents (i.e. representations, variation operators, reproduction, and selection mechanism). Finally, we give a brief overview on the manifold of application domains, although this necessarily must remain incomplete.

1,549 citations


Cited by
More filters
Proceedings ArticleDOI
04 Oct 1995
TL;DR: The optimization of nonlinear functions using particle swarm methodology is described and implementations of two paradigms are discussed and compared, including a recently developed locally oriented paradigm.
Abstract: The optimization of nonlinear functions using particle swarm methodology is described. Implementations of two paradigms are discussed and compared, including a recently developed locally oriented paradigm. Benchmark testing of both paradigms is described, and applications, including neural network training and robot task learning, are proposed. Relationships between particle swarm optimization and both artificial life and evolutionary computation are reviewed.

14,477 citations

Book
John R. Koza1
01 Jan 1992
TL;DR: This book discusses the evolution of architecture, primitive functions, terminals, sufficiency, and closure, and the role of representation and the lens effect in genetic programming.
Abstract: Background on genetic algorithms, LISP, and genetic programming hierarchical problem-solving introduction to automatically-defined functions - the two-boxes problem problems that straddle the breakeven point for computational effort Boolean parity functions determining the architecture of the program the lawnmower problem the bumblebee problem the increasing benefits of ADFs as problems are scaled up finding an impulse response function artificial ant on the San Mateo trail obstacle-avoiding robot the minesweeper problem automatic discovery of detectors for letter recognition flushes and four-of-a-kinds in a pinochle deck introduction to biochemistry and molecular biology prediction of transmembrane domains in proteins prediction of omega loops in proteins lookahead version of the transmembrane problem evolutionary selection of the architecture of the program evolution of primitives and sufficiency evolutionary selection of terminals evolution of closure simultaneous evolution of architecture, primitive functions, terminals, sufficiency, and closure the role of representation and the lens effect Appendices: list of special symbols list of special functions list of type fonts default parameters computer implementation annotated bibliography of genetic programming electronic mailing list and public repository

13,487 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book
01 Jan 1992
TL;DR: GAs and Evolution Programs for Various Discrete Problems, a Hierarchy of Evolution Programs and Heuristics, and Conclusions.
Abstract: 1 GAs: What Are They?.- 2 GAs: How Do They Work?.- 3 GAs: Why Do They Work?.- 4 GAs: Selected Topics.- 5 Binary or Float?.- 6 Fine Local Tuning.- 7 Handling Constraints.- 8 Evolution Strategies and Other Methods.- 9 The Transportation Problem.- 10 The Traveling Salesman Problem.- 11 Evolution Programs for Various Discrete Problems.- 12 Machine Learning.- 13 Evolutionary Programming and Genetic Programming.- 14 A Hierarchy of Evolution Programs.- 15 Evolution Programs and Heuristics.- 16 Conclusions.- Appendix A.- Appendix B.- Appendix C.- Appendix D.- References.

12,212 citations