scispace - formally typeset
Search or ask a question
Author

Thomas Baukrowitz

Other affiliations: University of Jena, University of Oxford, Harvard University  ...read more
Bio: Thomas Baukrowitz is an academic researcher from University of Kiel. The author has contributed to research in topics: Gating & Potassium channel. The author has an hindex of 35, co-authored 60 publications receiving 4846 citations. Previous affiliations of Thomas Baukrowitz include University of Jena & University of Oxford.


Papers
More filters
Journal ArticleDOI
29 Feb 1996-Nature
TL;DR: The characteristics of this gating suggest a specific role for this channel in the normal suppression of arrhythmias, and the inactivation gating mechanism resembles that of C-type inactivation of K+ channels.
Abstract: A HUMAN genetic defect associated with 'long Q–T syndrome', an abnormality of cardiac rhythm involving the repolarization of the action potential, was recently found to lie in the HERG gene, which codes for a potassium channel1. The HERG K+ channel is unusual in that it seems to have the architectural plan of the depolarization-activated K+ channel family (six putative trans-membrane segments), yet it exhibits rectification like that of the inward-rectifying K+ channels, a family with different molecular structure (two transmembrane segments)2–4. We have studied HERG channels expressed in mammalian cells and find that this inward rectification arises from a rapid and voltage-dependent inactivation process that reduces conductance at positive voltages. The inactivation gating mechanism resembles that of C-type inactivation, often considered to be the Slow inactivation' mechanism of other K+ channels. The characteristics of this gating suggest a specific role for this channel in the normal suppression of arrhythmias.

750 citations

Journal ArticleDOI
06 Nov 1998-Science
TL;DR: It is reported here that phosphatidylinositol-4, 5-bisphosphate (PIP2) and phosphorus-4-phosphates(PIP) controlled ATP inhibition of cloned KATP channels (Kir6.2 and SUR1) and represents a mechanism for control of excitability through phospholipids.
Abstract: Adenosine triphosphate (ATP)–sensitive potassium (KATP) channels couple electrical activity to cellular metabolism through their inhibition by intracellular ATP. ATP inhibition of KATP channels varies among tissues and is affected by the metabolic and regulatory state of individual cells, suggesting involvement of endogenous factors. It is reported here that phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylinositol-4-phosphate (PIP) controlled ATP inhibition of cloned KATP channels (Kir6.2 and SUR1). These phospholipids acted on the Kir6.2 subunit and shifted ATP sensitivity by several orders of magnitude. Receptor-mediated activation of phospholipase C resulted in inhibition of KATP-mediated currents. These results represent a mechanism for control of excitability through phospholipids.

520 citations

Journal ArticleDOI
01 Oct 1995-Neuron
TL;DR: It is found that frequency-dependent cumulative inactivation of Shaker channels is very sensitive to changes of extracellular K+ in the physiological range, with much more inactivation at low [K+]out, and that it results from the interaction of N- and C-type inactivation.

369 citations

Journal ArticleDOI
09 Apr 2004-Science
TL;DR: It is shown that membrane lipids can convert A-type channels into delayed rectifiers and vice versa and that bidirectional control of Kv channel gating by lipids may provide a mechanism for the dynamic regulation of electrical signaling in the nervous system.
Abstract: Voltage-gated potassium (Kv) channels control action potential repolarization, interspike membrane potential, and action potential frequency in excitable cells. It is thought that the combinatorial association between distinct alpha and beta subunits determines whether Kv channels function as non-inactivating delayed rectifiers or as rapidly inactivating A-type channels. We show that membrane lipids can convert A-type channels into delayed rectifiers and vice versa. Phosphoinositides remove N-type inactivation from A-type channels by immobilizing the inactivation domains. Conversely, arachidonic acid and its amide anandamide endow delayed rectifiers with rapid voltage-dependent inactivation. The bidirectional control of Kv channel gating by lipids may provide a mechanism for the dynamic regulation of electrical signaling in the nervous system.

316 citations

Journal ArticleDOI
01 Jun 2000-Neuron
TL;DR: It is shown here that unitary inhibitory postsynaptic currents at this synapse are mediated by SK2 channels and occur rapidly, with rise and decay time constants of approximately 6 ms and approximately 30 ms, respectively.

244 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors offer a new book that enPDFd the perception of the visual world to read, which they call "Let's Read". But they do not discuss how to read it.
Abstract: Let's read! We will often find out this sentence everywhere. When still being a kid, mom used to order us to always read, so did the teacher. Some books are fully read in a week and we need the obligation to support reading. What about now? Do you still love reading? Is reading only for you who have obligation? Absolutely not! We here offer you a new book enPDFd the perception of the visual world to read.

2,250 citations

Journal ArticleDOI
TL;DR: In cardiac myocytes, and probably other cell types, the exchanger serves a housekeeping role by maintaining a low intracellular Ca2+ concentration; its possible role in cardiac excitation-contraction coupling is controversial.
Abstract: The Na+/Ca2+ exchanger, an ion transport protein, is expressed in the plasma membrane (PM) of virtually all animal cells. It extrudes Ca2+ in parallel with the PM ATP-driven Ca2+ pump. As a reversible transporter, it also mediates Ca2+ entry in parallel with various ion channels. The energy for net Ca2+ transport by the Na+/Ca2+ exchanger and its direction depend on the Na+, Ca2+, and K+ gradients across the PM, the membrane potential, and the transport stoichiometry. In most cells, three Na+ are exchanged for one Ca2+. In vertebrate photoreceptors, some neurons, and certain other cells, K+ is transported in the same direction as Ca2+, with a coupling ratio of four Na+ to one Ca2+ plus one K+. The exchanger kinetics are affected by nontransported Ca2+, Na+, protons, ATP, and diverse other modulators. Five genes that code for the exchangers have been identified in mammals: three in the Na+/Ca2+ exchanger family (NCX1, NCX2, and NCX3) and two in the Na+/Ca2+ plus K+ family (NCKX1 and NCKX2). Genes homologous to NCX1 have been identified in frog, squid, lobster, and Drosophila. In mammals, alternatively spliced variants of NCX1 have been identified; dominant expression of these variants is cell type specific, which suggests that the variations are involved in targeting and/or functional differences. In cardiac myocytes, and probably other cell types, the exchanger serves a housekeeping role by maintaining a low intracellular Ca2+ concentration; its possible role in cardiac excitation-contraction coupling is controversial. Cellular increases in Na+ concentration lead to increases in Ca2+ concentration mediated by the Na+/Ca2+ exchanger; this is important in the therapeutic action of cardiotonic steroids like digitalis. Similarly, alterations of Na+ and Ca2+ apparently modulate basolateral K+ conductance in some epithelia, signaling in some special sense organs (e.g., photoreceptors and olfactory receptors) and Ca2+-dependent secretion in neurons and in many secretory cells. The juxtaposition of PM and sarco(endo)plasmic reticulum membranes may permit the PM Na+/Ca2+ exchanger to regulate sarco(endo)plasmic reticulum Ca2+ stores and influence cellular Ca2+ signaling.

1,715 citations

Journal ArticleDOI
07 Nov 1996-Nature
TL;DR: KVLQT1 is the subunit that coassembles with minK to form IKS channels and IKS dysfunction is a cause of cardiac arrhythmia, and is shown to encode a K+ channel with biophysical properties unlike other known cardiac currents.
Abstract: THE slowly activating delayed-rectifier K+ current, IKS, modulates the repolarization of cardiac action potentials. The molecular structure of the IKS channel is not known, but physiological data indicate that one component of theIKSchannel is minK (refs 1–6), a 130-amino-acid protein with a single putative transmembrane domain7. The size and structure of this protein is such that it is unlikely that minK alone forms functional channels8,9. We have previously used positional cloning techniques to define a new putative K+-channel gene, KVLQT110. Mutations in this gene cause long-QT syndrome, an inherited disorder that increases the risk of sudden death from cardiac arrhythmias. Here we show that KVLQT1 encodes a K+ channel with biophysical properties unlike other known cardiac currents. We considered that KVLQT1 might coassemble with another subunit to form func-tional channels in cardiac myocytes. Coexpression of KVLQT1 with minK induced a current that was almost identical to cardiac IKS. Therefore, KVLQT1 is the subunit that coassembles with minK to form IKS channels and IKS dysfunction is a cause of cardiac arrhythmia.

1,680 citations

Journal ArticleDOI
TL;DR: This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non- CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors.
Abstract: There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.

1,439 citations