scispace - formally typeset
Search or ask a question
Author

Thomas Bishop

Bio: Thomas Bishop is an academic researcher from King's College London. The author has contributed to research in topics: Schwann cell & Hyperalgesia. The author has an hindex of 5, co-authored 7 publications receiving 623 citations. Previous affiliations of Thomas Bishop include Wolfson Centre for Age-Related Diseases.

Papers
More filters
Journal ArticleDOI
TL;DR: The chemokine CCL2, produced by both damaged and undamaged primary sensory neurons in neuropathic pain states in rats, is released in an activity dependent manner from the central terminals of these fibres and provides a mechanism for immune activation, which in turn regulates the sensitivity of pain signaling systems in neuropathy pain states.

296 citations

Journal ArticleDOI
TL;DR: Investigation of the ability of intrathecal neurotrophin-3 (NT3) to promote axonal regeneration across the dorsal root entry zone (DREZ) and functional recovery in adult rats found it to allow sensory axons to overcome inhibition present at the DREZ and may serve to promote functional recovery following dorsal root avulsions in humans.

110 citations

Journal ArticleDOI
01 Sep 2007-Pain
TL;DR: It is concluded that UVB inflammation produces a dose‐dependent hyperalgesic state sensitive to established analgesics, which suggests thatUVB inflammation in the rat may represent a useful translational tool in the study of pain and the testing of analgesic agents.
Abstract: In humans, the acute inflammatory reaction caused by ultraviolet (UV) radiation is well studied and the sensory changes that are found have been used as a model of cutaneous hyperalgesia. Similar paradigms are now emerging as rodent models of inflammatory pain. Using a narrowband UVB source, we irradiated the plantar surface of rat hind paws. This produced the classical feature of inflammation, erythema, and a significant dose-dependent reduction in both thermal and mechanical paw withdrawal thresholds. These sensory changes peaked 48 h after irradiation. At this time there is a graded facilitation of noxious heat evoked (but not basal) c-fos-like immunoreactivity in the L4/5 segments of the spinal cord. We also studied the effects of established analgesic compounds on the UVB-induced hyperalgesia. Systemic as well as topical application of ibuprofen significantly reduced both thermal and mechanical hyperalgesia. Systemic morphine produced a dose-dependent and naloxone sensitive reversal of sensory changes. Similarly, the peripherally restricted opioid loperamide also had a dose-dependent anti-hyperalgesic effect, again reversed by naloxone methiodide. Sequestration of NGF, starting at the time of UVB irradiation, significantly reduced sensory changes. We conclude that UVB inflammation produces a dose-dependent hyperalgesic state sensitive to established analgesics. This suggests that UVB inflammation in the rat may represent a useful translational tool in the study of pain and the testing of analgesic agents.

91 citations

Journal ArticleDOI
TL;DR: It is suggested that UVB inflammation, at least using moderate doses produces sensory changes primarily by sensitising peripheral pain processing in the relative absence of alterations in central pain processing.

85 citations

Journal ArticleDOI
01 Jul 2010-Pain
TL;DR: It is concluded that UVB‐induced mechanical hyperalgesia may be explained by a net shift in peripheral nociceptor response properties and alteration in mechanical responses of A&dgr;‐ and heat‐insensitive C‐nocicePTors were particular to stronger stimuli.
Abstract: Ultraviolet (UV) induced cutaneous inflammation is emerging as a model of pain with a novel sensory phenotype. A UVB dose of 1000mJ/cm2 produces a highly significant thermal and mechanical hypersensitivity. Here we examined the properties and mechanisms of such hyperalgesia in rats. Significantly, the mechanical hyperalgesia (with approximately 60% change in withdrawal thresholds) was restricted to the lesion site with no changes in mechanical threshold in adjacent non-irradiated skin (i.e. no secondary hypersensitivity), suggesting a peripheral mechanism. Consistent with this, we found that primary mechanical hypersensitivity showed no significant changes after intrathecal treatment with 10microg of the NMDA-receptor antagonist MK-801. Using an in vitro skin-nerve preparation, in the presence and absence of UVB-inflammation, suprathreshold responses to skin displacement stimuli of 6-768microm of 103 peripheral nociceptors were recorded. At the peak of UVB-induced hyperalgesia we observed that mechanical response properties of Adelta-nociceptors recorded from UVB-inflamed skin (n=19) were significantly diminished, by approximately 50%, compared to those recorded from naive skin (n=13). The mechanical response properties of heat-sensitive C-nociceptors were unchanged while their heat responses were significantly increased, by approximately 75%, in UVB-inflamed (n=26) compared to naive skin (n=12). Heat-insensitive C-nociceptors, however, demonstrated significantly enhanced (by approximately 60%) response properties to mechanical stimulation in UVB-inflamed (n=21) compared to naive skin (n=12). Notably alteration in mechanical responses of Adelta- and heat-insensitive C-nociceptors were particular to stronger stimuli. Spontaneous activity was not induced by this dose of UVB. We conclude that UVB-induced mechanical hyperalgesia may be explained by a net shift in peripheral nociceptor response properties.

57 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2011-Pain
TL;DR: Diagnostic criteria to establish the presence of central sensitization in patients will greatly assist the phenotyping of patients for choosing treatments that produce analgesia by normalizing hyperexcitable central neural activity.
Abstract: Nociceptor inputs can trigger a prolonged but reversible increase in the excitability and synaptic efficacy of neurons in central nociceptive pathways, the phenomenon of central sensitization. Central sensitization manifests as pain hypersensitivity, particularly dynamic tactile allodynia, secondary punctate or pressure hyperalgesia, aftersensations, and enhanced temporal summation. It can be readily and rapidly elicited in human volunteers by diverse experimental noxious conditioning stimuli to skin, muscles or viscera, and in addition to producing pain hypersensitivity, results in secondary changes in brain activity that can be detected by electrophysiological or imaging techniques. Studies in clinical cohorts reveal changes in pain sensitivity that have been interpreted as revealing an important contribution of central sensitization to the pain phenotype in patients with fibromyalgia, osteoarthritis, musculoskeletal disorders with generalized pain hypersensitivity, headache, temporomandibular joint disorders, dental pain, neuropathic pain, visceral pain hypersensitivity disorders and post-surgical pain. The comorbidity of those pain hypersensitivity syndromes that present in the absence of inflammation or a neural lesion, their similar pattern of clinical presentation and response to centrally acting analgesics, may reflect a commonality of central sensitization to their pathophysiology. An important question that still needs to be determined is whether there are individuals with a higher inherited propensity for developing central sensitization than others, and if so, whether this conveys an increased risk in both developing conditions with pain hypersensitivity, and their chronification. Diagnostic criteria to establish the presence of central sensitization in patients will greatly assist the phenotyping of patients for choosing treatments that produce analgesia by normalizing hyperexcitable central neural activity. We have certainly come a long way since the first discovery of activity-dependent synaptic plasticity in the spinal cord and the revelation that it occurs and produces pain hypersensitivity in patients. Nevertheless, discovering the genetic and environmental contributors to and objective biomarkers of central sensitization will be highly beneficial, as will additional treatment options to prevent or reduce this prevalent and promiscuous form of pain plasticity.

3,331 citations

Journal ArticleDOI
TL;DR: Chondroitin and keratan sulphate proteoglycans are among the main inhibitory extracellular matrix molecules that are produced by reactive astrocytes in the glial scar, and they are believed to play a crucial part in regeneration failure.
Abstract: After injury to the adult central nervous system (CNS), injured axons cannot regenerate past the lesion. In this review, we present evidence that this is due to the formation of a glial scar. Chondroitin and keratan sulphate proteoglycans are among the main inhibitory extracellular matrix molecules that are produced by reactive astrocytes in the glial scar, and they are believed to play a crucial part in regeneration failure. We will focus on this role, as well as considering the behaviour of regenerating neurons in the environment of CNS injury.

2,838 citations

Journal ArticleDOI
TL;DR: The current understanding of the contribution of glia to pathological pain and neuroprotection is reviewed, and how the protective, anti-inflammatory actions ofglia are being harnessed to develop new drug targets for neuropathic pain control is reviewed.
Abstract: Glia have emerged as key contributors to pathological and chronic pain mechanisms. On activation, both astrocytes and microglia respond to and release a number of signalling molecules, which have protective and/or pathological functions. Here we review the current understanding of the contribution of glia to pathological pain and neuroprotection, and how the protective, anti-inflammatory actions of glia are being harnessed to develop new drug targets for neuropathic pain control. Given the prevalence of chronic pain and the partial efficacy of current drugs, which exclusively target neuronal mechanisms, new strategies to manipulate neuron–glia interactions in pain processing hold considerable promise.

1,260 citations

Journal ArticleDOI
TL;DR: Other strategies for modulating inflammation and changing the make up of inhibitory molecules in the extracellular matrix are providing robust evidence that rehabilitation after spinal cord and brain injury has the potential to significantly change the outcome for what was once thought to be permanent disability.

936 citations

Journal ArticleDOI
20 Jun 2013-Pain
TL;DR: Chronic pain could be a result of "gliopathy," that is, dysregulation of glial functions in the central and peripheral nervous system, and an update on recent advances is provided and remaining questions are discussed.
Abstract: Activation of glial cells and neuro–glial interactions are emerging as key mechanisms underlying chronic pain. Accumulating evidence has implicated 3 types of glial cells in the development and maintenance of chronic pain: microglia and astrocytes of the central nervous system (CNS), and satellite glial cells of the dorsal root and trigeminal ganglia. Painful syndromes are associated with different glial activation states: (1) glial reaction (ie, upregulation of glial markers such as IBA1 and glial fibrillary acidic protein (GFAP) and/or morphological changes, including hypertrophy, proliferation, and modifications of glial networks); (2) phosphorylation of mitogen-activated protein kinase signaling pathways; (3) upregulation of adenosine triphosphate and chemokine receptors and hemichannels and downregulation of glutamate transporters; and (4) synthesis and release of glial mediators (eg, cytokines, chemokines, growth factors, and proteases) to the extracellular space. Although widely detected in chronic pain resulting from nerve trauma, inflammation, cancer, and chemotherapy in rodents, and more recently, human immunodeficiency virus-associated neuropathy in human beings, glial reaction (activation state 1) is not thought to mediate pain sensitivity directly. Instead, activation states 2 to 4 have been demonstrated to enhance pain sensitivity via a number of synergistic neuro–glial interactions. Glial mediators have been shown to powerfully modulate excitatory and inhibitory synaptic transmission at presynaptic, postsynaptic, and extrasynaptic sites. Glial activation also occurs in acute pain conditions, and acute opioid treatment activates peripheral glia to mask opioid analgesia. Thus, chronic pain could be a result of ‘‘gliopathy,’’ that is, dysregulation of glial functions in the central and peripheral nervous system. In this review, we provide an update on recent advances and discuss remaining questions.

889 citations