scispace - formally typeset
Search or ask a question
Author

Thomas C. Victor

Bio: Thomas C. Victor is an academic researcher from Stellenbosch University. The author has contributed to research in topics: Mycobacterium tuberculosis & Tuberculosis. The author has an hindex of 46, co-authored 89 publications receiving 6224 citations. Previous affiliations of Thomas C. Victor include Tygerberg Hospital & Medical Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: DNA fingerprinting with restriction-fragment-length polymorphism analysis indicates that reinfection was the cause of the recurrence of tuberculosis after curative treatment of postprimary tuberculosis.
Abstract: Background For decades it has been assumed that postprimary tuberculosis is usually caused by reactivation of endogenous infection rather than by a new, exogenous infection. Methods We performed DNA fingerprinting with restriction-fragment–length polymorphism analysis on pairs of isolates of Mycobacterium tuberculosis from 16 compliant patients who had a relapse of pulmonary tuberculosis after curative treatment of postprimary tuberculosis. The patients lived in areas of South Africa where tuberculosis is endemic. Medical records were reviewed for clinical data. Results For 12 of the 16 patients, the restriction-fragment–length polymorphism banding patterns for the isolates obtained after the relapse were different from those for the isolates from the initial tuberculous disease. This finding indicates that reinfection was the cause of the recurrence of tuberculosis after curative treatment. Two patients had reinfections with a multidrug-resistant strain. All 15 patients who were tested for the human immu...

625 citations

Journal ArticleDOI
TL;DR: Functional genetic analysis of mutations in one gene, ponA1, demonstrated an in vitro growth advantage in the presence of the drug rifampicin, and evidence of positive selection in an additional 39 genomic regions in resistant isolates was found.
Abstract: M. tuberculosis is evolving antibiotic resistance, threatening attempts at tuberculosis epidemic control. Mechanisms of resistance, including genetic changes favored by selection in resistant isolates, are incompletely understood. Using 116 newly sequenced and 7 previously sequenced M. tuberculosis whole genomes, we identified genome-wide signatures of positive selection specific to the 47 drug-resistant strains. By searching for convergent evolution--the independent fixation of mutations in the same nucleotide position or gene--we recovered 100% of a set of known resistance markers. We also found evidence of positive selection in an additional 39 genomic regions in resistant isolates. These regions encode components in cell wall biosynthesis, transcriptional regulation and DNA repair pathways. Mutations in these regions could directly confer resistance or compensate for fitness costs associated with resistance. Functional genetic analysis of mutations in one gene, ponA1, demonstrated an in vitro growth advantage in the presence of the drug rifampicin.

385 citations

01 Sep 2013
TL;DR: In this article, the authors identified genome-wide signatures of positive selection specific to the 47 drug-resistant strains of M. tuberculosis and identified positive selection in 39 genomic regions in resistant isolates, encoding components in cell wall biosynthesis, transcriptional regulation and DNA repair pathways.
Abstract: M. tuberculosis is evolving antibiotic resistance, threatening attempts at tuberculosis epidemic control. Mechanisms of resistance, including genetic changes favored by selection in resistant isolates, are incompletely understood. Using 116 newly sequenced and 7 previously sequenced M. tuberculosis whole genomes, we identified genome-wide signatures of positive selection specific to the 47 drug-resistant strains. By searching for convergent evolution--the independent fixation of mutations in the same nucleotide position or gene--we recovered 100% of a set of known resistance markers. We also found evidence of positive selection in an additional 39 genomic regions in resistant isolates. These regions encode components in cell wall biosynthesis, transcriptional regulation and DNA repair pathways. Mutations in these regions could directly confer resistance or compensate for fitness costs associated with resistance. Functional genetic analysis of mutations in one gene, ponA1, demonstrated an in vitro growth advantage in the presence of the drug rifampicin.

315 citations

Journal ArticleDOI
TL;DR: The results suggest that multiple infections are frequent, implying high reinfection rates and the absence of efficient protective immunity conferred by the initial infection.
Abstract: It is generally accepted that tuberculosis results from a single infection with a single Mycobacterium tuberculosis strain. Such infections are thought to confer protective immunity against exogenous reinfection. In this study, a novel polymerase chain reaction method was developed to specifically identify M. tuberculosis strains belonging to the Beijing and non-Beijing evolutionary lineages in sputum specimens collected from tuberculosis patients resident in an epidemiologic field site in Cape Town, South Africa. The sensitivity and specificity of the polymerase chain reaction-based strain classification method were 100% (95% confidence interval, 85-100%) when compared with DNA fingerprinting and spacer oligotyping (spoligotyping). Application of this method showed that 19% of all patients were simultaneously infected with Beijing and non-Beijing strains, and 57% of patients infected with a Beijing strain were also infected with a non-Beijing strain. Multiple infections were more frequent in retreatment cases (23%) as compared with new cases (17%), but were not associated with sex, age, or smear grading. These results suggest that multiple infections are frequent, implying high reinfection rates and the absence of efficient protective immunity conferred by the initial infection. This finding could influence our understanding of the epidemiology of disease in high-incidence regions and our understanding for vaccine development.

299 citations

Journal ArticleDOI
TL;DR: Recommendations for Tuberculosis treatment according to the WHO guidelines, the drug resistance problem in the world, mechanisms of resistance to first line and second line drugs and applications of molecular methods to detect resistance causing gene mutations are described.
Abstract: Anti-tuberculosis drugs are a two-edged sword. While they destroy pathogenic M. tuberculosis they also select for drug resistant bacteria against which those drugs are then ineffective. Global surveillance has shown that drug resistant Tuberculosis is widespread and is now a threat to tuberculosis control programs in many countries. Application of molecular methods during the last decade has greatly changed our understanding of drug resistance in tuberculosis. Application of molecular epidemiological methods was also central to the description of outbreaks of drug resistance in Tuberculosis. This review describes recommendations for Tuberculosis treatment according to the WHO guidelines, the drug resistance problem in the world, mechanisms of resistance to first line and second line drugs and applications of molecular methods to detect resistance causing gene mutations. It is envisaged that molecular techniques may be important adjuncts to traditional culture based procedures to rapidly screen for drug resistance. Prospective analysis and intervention to prevent transmission may be particularly helpful in areas with ongoing transmission of drug resistant strains as recent mathematical modeling indicate that the burden of MDR-TB cannot be contained in the absence of specific efforts to limit transmission.

283 citations


Cited by
More filters
Journal ArticleDOI

2,773 citations

Journal ArticleDOI
TL;DR: Radiographic evidence of Prior Tuberculosis: Inactive Tuber tuberculosis and Culture-negative Pulmonary Tuber TB in Adults is presented.
Abstract: 8.4. Culture-negative Pulmonary Tuberculosis CONTENTS in Adults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 8.5. Radiographic Evidence of Prior Tuberculosis: Inactive Tuberculosis . . . . . . . . . . . . . . . . . . . . . 650

1,887 citations

Journal ArticleDOI
TL;DR: The guidelines promote the early use of antiretroviral agents for TB patients with HIV on second-line drug regimens and systems that primarily employ ambulatory models of care are recommended over others based mainly on hospitalisation.
Abstract: The production of guidelines for the management of drug-resistant tuberculosis (TB) fits the mandate of the World Health Organization (WHO) to support countries in the reinforcement of patient care. WHO commissioned external reviews to summarise evidence on priority questions regarding case-finding, treatment regimens for multidrug-resistant TB (MDR-TB), monitoring the response to MDR-TB treatment, and models of care. A multidisciplinary expert panel used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to develop recommendations. The recommendations support the wider use of rapid drug susceptibility testing for isoniazid and rifampicin or rifampicin alone using molecular techniques. Monitoring by sputum culture is important for early detection of failure during treatment. Regimens lasting ≥ 20 months and containing pyrazinamide, a fluoroquinolone, a second-line injectable drug, ethionamide (or prothionamide), and either cycloserine or p-aminosalicylic acid are recommended. The guidelines promote the early use of antiretroviral agents for TB patients with HIV on second-line drug regimens. Systems that primarily employ ambulatory models of care are recommended over others based mainly on hospitalisation. Scientific and medical associations should promote the recommendations among practitioners and public health decision makers involved in MDR-TB care. Controlled trials are needed to improve the quality of existing evidence, particularly on the optimal composition and duration of MDR-TB treatment regimens.

1,147 citations

30 Dec 2005
TL;DR: The threat of MDR TB is decreasing, and the transmission of M. tuberculosis in health-care settings continues to decrease because of implementation of infection-control measures and reductions in community rates of TB.
Abstract: In 1994, CDC published the Guidelines for Preventing the Transmission of Mycobacterium tuberculosis in HealthCare Facilities, 1994. The guidelines were issued in response to 1) a resurgence of tuberculosis (TB) disease that occurred in the United States in the mid-1980s and early 1990s, 2) the documentation of several high-profile health-care--associated (previously termed "nosocomial") outbreaks related to an increase in the prevalence of TB disease and human immunodeficiency virus (HIV) coinfection, 3) lapses in infection control practices, 4) delays in the diagnosis and treatment of persons with infectious TB disease, and 5) the appearance and transmission of multidrug-resistant (MDR) TB strains. The 1994 guidelines, which followed statements issued in 1982 and 1990, presented recommendations for TB infection control based on a risk assessment process that classified health-care facilities according to categories of TB risk, with a corresponding series of administrative, environmental, and respiratory protection control measures. The TB infection control measures recommended by CDC in 1994 were implemented widely in health-care facilities in the United States. The result has been a decrease in the number of TB outbreaks in health-care settings reported to CDC and a reduction in health-care-associated transmission of Mycobacterium tuberculosis to patients and health-care workers (HCWs). Concurrent with this success, mobilization of the nation's TB control programs succeeded in reversing the upsurge in reported cases of TB disease, and case rates have declined in the subsequent 10 years. Findings indicate that although the 2004 TB rate was the lowest recorded in the United States since national reporting began in 1953, the declines in rates for 2003 (2.3%) and 2004 (3.2%) were the smallest since 1993. In addition, TB infection rates greater than the U.S. average continue to be reported in certain racial/ethnic populations. The threat of MDR TB is decreasing, and the transmission of M. tuberculosis in health-care settings continues to decrease because of implementation of infection-control measures and reductions in community rates of TB. Given the changes in epidemiology and a request by the Advisory Council for the Elimination of Tuberculosis (ACET) for review and update of the 1994 TB infection control document, CDC has reassessed the TB infection control guidelines for health-care settings. This report updates TB control recommendations reflecting shifts in the epidemiology of TB, advances in scientific understanding, and changes in health-care practice that have occurred in the United States during the preceding decade. In the context of diminished risk for health-care-associated transmission of M. tuberculosis, this document places emphasis on actions to maintain momentum and expertise needed to avert another TB resurgence and to eliminate the lingering threat to HCWs, which is mainly from patients or others with unsuspected and undiagnosed infectious TB disease. CDC prepared the current guidelines in consultation with experts in TB, infection control, environmental control, respiratory protection, and occupational health. The new guidelines have been expanded to address a broader concept; health-care--associated settings go beyond the previously defined facilities. The term "health-care setting" includes many types, such as inpatient settings, outpatient settings, TB clinics, settings in correctional facilities in which health care is delivered, settings in which home-based health-care and emergency medical services are provided, and laboratories handling clinical specimens that might contain M. tuberculosis. The term "setting" has been chosen over the term "facility," used in the previous guidelines, to broaden the potential places for which these guidelines apply.

1,136 citations

Journal ArticleDOI
01 Jan 2004-Drugs
TL;DR: Fluoroquinolones and β-lactams of the latest generations are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents.
Abstract: Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.

1,118 citations