scispace - formally typeset
Search or ask a question
Author

Thomas Clausen

Bio: Thomas Clausen is an academic researcher from École Polytechnique. The author has contributed to research in topics: Optimized Link State Routing Protocol & Routing protocol. The author has an hindex of 32, co-authored 124 publications receiving 12924 citations. Previous affiliations of Thomas Clausen include IEEE Computer Society & University of Paris-Sud.


Papers
More filters
11 Dec 2012
TL;DR: This document describes the Lightweight Ad hoc On-Demand - Next Generation (LOADng) distance vector routing protocol, a reactive routing protocol intended for use in Mobile Ad hoc NETworks (MANETs).

78 citations

01 Feb 2008
TL;DR: This document provides recommendations for jittering (randomly modifying timing) of control traffic transmissions in Mobile Ad hoc NETwork (MANET) routing protocols to reduce the probability of transmission collisions.
Abstract: This document provides recommendations for jittering (randomly modifying timing) of control traffic transmissions in MANET routing protocols to reduce the probability of packet collisions.

68 citations

Proceedings ArticleDOI
03 Nov 2011
TL;DR: The results of this investigation reveal that for scenarios where bi-directional traffic flows are predominant, LOAD provides similar data delivery ratios as RPL, while incurring less overhead and being simultaneously less constrained in the types of topologies supported.
Abstract: Routing protocols for sensor networks are often designed with explicit assumptions, serving to simplify design and reduce the necessary energy, processing and communications requirements. Different protocols make different assumptions - and this paper considers those made by the designers of RPL - an IPv6 routing protocol for such networks, developed within the IETF. Specific attention is given to the predominance of bi-directional traffic flows in a large class of sensor networks, and this paper therefore studies the performance of RPL for such flows. As a point of comparison, a different protocol, called LOAD, is also studied. LOAD is derived from AODV and supports more general kinds of traffic flows. The results of this investigation reveal that for scenarios where bi-directional traffic flows are predominant, LOAD provides similar data delivery ratios as RPL, while incurring less overhead and being simultaneously less constrained in the types of topologies supported.

63 citations

Journal ArticleDOI
TL;DR: This paper study's how much the scalability is enhanced with the use of Fish eye techniques in addition to the link state routing framework, and shows that with this enhancement, the theoretical scalability bounds are reached.
Abstract: Scalability is one of the toughest challenges in ad hoc networking. Recent work outlines theoretical bounds on how well routing protocols could scale in this environment. However, none of the popular routing solutions really scales to large networks, by coming close enough to these bounds. In this paper, we study the case of link state routing and OLSR, one of the strongest candidates for standardization. We analyze how these bounds are not reached in this case, and we study how much the scalability is enhanced with the use of Fish eye techniques in addition to the link state routing framework. We show that with this enhancement, the theoretical scalability bounds are reached.

54 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Proceedings ArticleDOI
01 Aug 1999
TL;DR: This paper believes that localized algorithms (in which simple local node behavior achieves a desired global objective) may be necessary for sensor network coordination.
Abstract: Networked sensors-those that coordinate amongst themselves to achieve a larger sensing task-will revolutionize information gathering and processing both in urban environments and in inhospitable terrain. The sheer numbers of these sensors and the expected dynamics in these environments present unique challenges in the design of unattended autonomous sensor networks. These challenges lead us to hypothesize that sensor network coordination applications may need to be structured differently from traditional network applications. In particular, we believe that localized algorithms (in which simple local node behavior achieves a desired global objective) may be necessary for sensor network coordination. In this paper, we describe localized algorithms, and then discuss directed diffusion, a simple communication model for describing localized algorithms.

3,044 citations

Journal ArticleDOI
01 May 2005
TL;DR: In this paper, several fundamental key aspects of underwater acoustic communications are investigated and a cross-layer approach to the integration of all communication functionalities is suggested.
Abstract: Underwater sensor nodes will find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. Moreover, unmanned or autonomous underwater vehicles (UUVs, AUVs), equipped with sensors, will enable the exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. Underwater networks consist of a variable number of sensors and vehicles that are deployed to perform collaborative monitoring tasks over a given area. In this paper, several fundamental key aspects of underwater acoustic communications are investigated. Different architectures for two-dimensional and three-dimensional underwater sensor networks are discussed, and the characteristics of the underwater channel are detailed. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed and a cross-layer approach to the integration of all communication functionalities is suggested. Furthermore, open research issues are discussed and possible solution approaches are outlined. � 2005 Published by Elsevier B.V.

2,864 citations

Journal ArticleDOI
TL;DR: This article takes advantage of the inherent redundancy in ad hoc networks-multiple routes between nodes-to defend routing against denial-of-service attacks and uses replication and new cryptographic schemes to build a highly secure and highly available key management service, which terms the core of this security framework.
Abstract: Ad hoc networks are a new wireless networking paradigm for mobile hosts. Unlike traditional mobile wireless networks, ad hoc networks do not rely on any fixed infrastructure. Instead, hosts rely on each other to keep the network connected. Military tactical and other security-sensitive operations are still the main applications of ad hoc networks, although there is a trend to adopt ad hoc networks for commercial uses due to their unique properties. One main challenge in the design of these networks is their vulnerability to security attacks. In this article, we study the threats on ad hoc network faces and the security goals to be achieved. We identify the new challenges and opportunities posed by this new networking environment and explore new approaches to secure its communication. In particular, we take advantage of the inherent redundancy in ad hoc networks-multiple routes between nodes-to defend routing against denial-of-service attacks. We also use replication and new cryptographic schemes, such as threshold cryptography, to build a highly secure and highly available key management service, which terms the core of our security framework.

2,661 citations