scispace - formally typeset
Search or ask a question
Author

Thomas D. Barber

Other affiliations: Johns Hopkins University
Bio: Thomas D. Barber is an academic researcher from Eli Lilly and Company. The author has contributed to research in topics: Hepatitis B virus & Cholecystokinin B receptor. The author has an hindex of 5, co-authored 7 publications receiving 4275 citations. Previous affiliations of Thomas D. Barber include Johns Hopkins University.

Papers
More filters
PatentDOI
13 Aug 2007-Science
TL;DR: In this paper, the authors analyzed 13,023 genes in 11 breast and 11 colorectal cancers and found that individual tumors accumulate an average of 90 mutant genes but only a subset of these contribute to the neoplastic process.
Abstract: Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of ˜90 mutant genes but that only a subset of these contribute to the neoplastic process. Using stringent criteria to delineate this subset, we identified 189 genes (average of 11 per tumor) that were mutated at significant frequency. The vast majority of these genes were not known to be genetically altered in tumors and are predicted to affect a wide range of cellular functions, including transcription, adhesion, and invasion. These data define the genetic landscape of two human cancer types, provide new targets for diagnostic and therapeutic intervention and monitoring.

3,152 citations

Journal ArticleDOI
TL;DR: Evidence is reported that suggests that the number of HBV integrations is associated with patient survival and copy-number variations were significantly increased at HBV breakpoint locations where chromosomal instability was likely induced.
Abstract: To survey hepatitis B virus (HBV) integration in liver cancer genomes, we conducted massively parallel sequencing of 81 HBV-positive and 7 HBV-negative hepatocellular carcinomas (HCCs) and adjacent normal tissues. We found that HBV integration is observed more frequently in the tumors (86.4%) than in adjacent liver tissues (30.7%). Copy-number variations (CNVs) were significantly increased at HBV breakpoint locations where chromosomal instability was likely induced. Approximately 40% of HBV breakpoints within the HBV genome were located within a 1,800-bp region where the viral enhancer, X gene and core gene are located. We also identified recurrent HBV integration events (in ≥4 HCCs) that were validated by RNA sequencing (RNA-seq) and Sanger sequencing at the known and putative cancer-related TERT, MLL4 and CCNE1 genes, which showed upregulated gene expression in tumor versus normal tissue. We also report evidence that suggests that the number of HBV integrations is associated with patient survival.

772 citations

Journal ArticleDOI
TL;DR: Findings from a whole-genome sequencing study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, find beta-catenin to be the mostrequently mutated oncogene and TP53 the most frequently mutated tumor suppressor.
Abstract: Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 (JAK1), in 9.1% of patients and provides a path toward therapeutic intervention of the disease.

457 citations

Journal ArticleDOI
TL;DR: The present study investigated the intracellular localization and G protein–dependent and –independent signaling of eight GRM1 (mGluR1a) somatic mutations and suggested that mGlu R1a signaling in cancer is disrupted by somatics mutations with multiple downstream consequences.
Abstract: The activity of metabotropic glutamate receptors (mGluRs) is known to be altered as the consequence of neurodegenerative diseases such as Alzheimer, Parkinson, and Huntington disease. However, little attention has been paid to this receptor family's potential link with cancer. Recent reports indicate altered mGluR signaling in various tumor types, and several somatic mutations in mGluR1a in lung cancer were recently described. Group 1 mGluRs (mGluR1a and mGluR5) are coupled primarily to Gαq, leading to the activation of phospholipase C and to the formation of diacylglycerol and inositol 1,4,5-trisphosphate, leading to the release of Ca(2+) from intracellular stores and protein kinase C (PKC) activation. In the present study, we investigated the intracellular localization and G protein-dependent and -independent signaling of eight GRM1 (mGluR1a) somatic mutations. Two mutants found in close proximity to the glutamate binding domain and cysteine-rich region (R375G and G396V) show both decreased cell surface expression and basal inositol phosphate (IP) formation. However, R375G shows increased ERK1/2 activation in response to quisqualate stimulation. A mutant located directly in the glutamate binding site (A168V) shows increased quisqualate-induced IP formation and, similar to R375G, increased ERK1/2 activation. Additionally, a mutation in the G protein-coupled receptor kinase 2/PKC regulatory region (R696W) shows decreased ERK1/2 activation, whereas a mutation within the Homer binding region in the carboxyl-terminal tail (P1148L) does not alter the intracellular localization of the receptor, but it induces changes in cellular morphology and exhibits reduced ERK1/2 activation. Taken together, these results suggest that mGluR1a signaling in cancer is disrupted by somatic mutations with multiple downstream consequences.

38 citations

Journal ArticleDOI
TL;DR: It is suggested that somatic mutations in CCK2R may promote tumorigenesis through deregulated receptor activity and highlight the importance of evaluating CCK 2R inhibitors to block both the normal and mutant forms of the receptor.
Abstract: The roles of cholecystokinin 2 receptor (CCK2R) in numerous physiologic processes in the gastrointestinal tract and central nervous system are well documented. There has been some evidence that CCK2R alterations play a role in cancers, but the functional significance of these alterations for tumorigenesis is unknown. We have identified six mutations in CCK2R among a panel of 140 colorectal cancers and 44 gastric cancers. We show that these mutations increase receptor activity, activate multiple downstream signaling pathways, increase cell migration, and promote angiogenesis. Our findings suggest that somatic mutations in CCK2R may promote tumorigenesis through deregulated receptor activity and highlight the importance of evaluating CCK2R inhibitors to block both the normal and mutant forms of the receptor.

19 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Anti-PD-1 antibody produced objective responses in approximately one in four to one in five patients with non-small-cell lung cancer, melanoma, or renal-cell cancer; the adverse-event profile does not appear to preclude its use.
Abstract: Background Blockade of programmed death 1 (PD-1), an inhibitory receptor expressed by T cells, can overcome immune resistance. We assessed the antitumor activity and safety of BMS-936558, an antibody that specifically blocks PD-1. Methods We enrolled patients with advanced melanoma, non–small-cell lung cancer, castrationresistant prostate cancer, or renal-cell or colorectal cancer to receive anti–PD-1 antibody at a dose of 0.1 to 10.0 mg per kilogram of body weight every 2 weeks. Response was assessed after each 8-week treatment cycle. Patients received up to 12 cycles until disease progression or a complete response occurred. Results A total of 296 patients received treatment through February 24, 2012. Grade 3 or 4 drugrelated adverse events occurred in 14% of patients; there were three deaths from pulmonary toxicity. No maximum tolerated dose was defined. Adverse events consistent with immune-related causes were observed. Among 236 patients in whom response could be evaluated, objective responses (complete or partial responses) were observed in those with non–small-cell lung cancer, melanoma, or renal-cell cancer. Cumulative response rates (all doses) were 18% among patients with non–small-cell lung cancer (14 of 76 patients), 28% among patients with melanoma (26 of 94 patients), and 27% among patients with renal-cell cancer (9 of 33 patients). Responses were durable; 20 of 31 responses lasted 1 year or more in patients with 1 year or more of follow-up. To assess the role of intratumoral PD-1 ligand (PD-L1) expression in the modulation of the PD-1–PD-L1 pathway, immunohistochemical analysis was performed on pretreatment tumor specimens obtained from 42 patients. Of 17 patients with PD-L1–negative tumors, none had an objective response; 9 of 25 patients (36%) with PD-L1–positive tumors had an objective response (P = 0.006). Conclusions Anti–PD-1 antibody produced objective responses in approximately one in four to one in five patients with non–small-cell lung cancer, melanoma, or renal-cell cancer; the adverse-event profile does not appear to preclude its use. Preliminary data suggest a relationship between PD-L1 expression on tumor cells and objective response. (Funded by Bristol-Myers Squibb and others; ClinicalTrials.gov number, NCT00730639.)

10,674 citations

Journal ArticleDOI
Donna M. Muzny1, Matthew N. Bainbridge1, Kyle Chang1, Huyen Dinh1  +317 moreInstitutions (24)
19 Jul 2012-Nature
TL;DR: Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.
Abstract: To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and MLH1 silencing, and one-quarter had somatic mismatch-repair gene and polymerase e (POLE) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to have considerably similar patterns of genomic alteration. Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B. Recurrent copy-number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.

6,883 citations

Journal ArticleDOI
TL;DR: Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development.
Abstract: Background Intratumor heterogeneity may foster tumor evolution and adaptation and hinder personalized-medicine strategies that depend on results from single tumor-biopsy samples. Methods To examine intratumor heterogeneity, we performed exome sequencing, chromosome aberration analysis, and ploidy profiling on multiple spatially separated samples obtained from primary renal carcinomas and associated metastatic sites. We characterized the consequences of intratumor heterogeneity using immunohistochemical analysis, mutation functional analysis, and profiling of messenger RNA expression. Results Phylogenetic reconstruction revealed branched evolutionary tumor growth, with 63 to 69% of all somatic mutations not detectable across every tumor region. Intratumor heterogeneity was observed for a mutation within an autoinhibitory domain of the mammalian target of rapamycin (mTOR) kinase, correlating with S6 and 4EBP phosphorylation in vivo and constitutive activation of mTOR kinase activity in vitro. Mutational intratumor heterogeneity was seen for multiple tumor-suppressor genes converging on loss of function; SETD2, PTEN, and KDM5C underwent multiple distinct and spatially separated inactivating mutations within a single tumor, suggesting convergent phenotypic evolution. Gene-expression signatures of good and poor prognosis were detected in different regions of the same tumor. Allelic composition and ploidy profiling analysis revealed extensive intratumor heterogeneity, with 26 of 30 tumor samples from four tumors harboring divergent allelic-imbalance profiles and with ploidy heterogeneity in two of four tumors. Conclusions Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development. Intratumor heterogeneity, associated with heterogeneous protein function, may foster tumor adaptation and therapeutic failure through Darwinian selection. (Funded by the Medical Research Council and others.)

6,672 citations

Journal ArticleDOI
TL;DR: This protocol provides a workflow for genome-independent transcriptome analysis leveraging the Trinity platform and presents Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes.
Abstract: De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sourceforge.net. The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.

6,369 citations

Journal ArticleDOI
26 Sep 2008-Science
TL;DR: Recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival.
Abstract: Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.

5,250 citations