scispace - formally typeset
Search or ask a question
Author

Thomas D. Cook

Bio: Thomas D. Cook is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Randomized experiment & Causal inference. The author has an hindex of 71, co-authored 287 publications receiving 44231 citations. Previous affiliations of Thomas D. Cook include Mathematica Policy Research & University of Wisconsin–Milwaukee.


Papers
More filters
Book
01 Jan 2001
TL;DR: In this article, the authors present experiments and generalized Causal inference methods for single and multiple studies, using both control groups and pretest observations on the outcome of the experiment, and a critical assessment of their assumptions.
Abstract: 1. Experiments and Generalized Causal Inference 2. Statistical Conclusion Validity and Internal Validity 3. Construct Validity and External Validity 4. Quasi-Experimental Designs That Either Lack a Control Group or Lack Pretest Observations on the Outcome 5. Quasi-Experimental Designs That Use Both Control Groups and Pretests 6. Quasi-Experimentation: Interrupted Time Series Designs 7. Regression Discontinuity Designs 8. Randomized Experiments: Rationale, Designs, and Conditions Conducive to Doing Them 9. Practical Problems 1: Ethics, Participant Recruitment, and Random Assignment 10. Practical Problems 2: Treatment Implementation and Attrition 11. Generalized Causal Inference: A Grounded Theory 12. Generalized Causal Inference: Methods for Single Studies 13. Generalized Causal Inference: Methods for Multiple Studies 14. A Critical Assessment of Our Assumptions

12,215 citations

Journal ArticleDOI
Daniel J. Benjamin1, James O. Berger2, Magnus Johannesson3, Magnus Johannesson1, Brian A. Nosek4, Brian A. Nosek5, Eric-Jan Wagenmakers6, Richard A. Berk7, Kenneth A. Bollen8, Björn Brembs9, Lawrence D. Brown7, Colin F. Camerer10, David Cesarini11, David Cesarini12, Christopher D. Chambers13, Merlise A. Clyde2, Thomas D. Cook14, Thomas D. Cook15, Paul De Boeck16, Zoltan Dienes17, Anna Dreber3, Kenny Easwaran18, Charles Efferson19, Ernst Fehr20, Fiona Fidler21, Andy P. Field17, Malcolm R. Forster22, Edward I. George7, Richard Gonzalez23, Steven N. Goodman24, Edwin J. Green25, Donald P. Green26, Anthony G. Greenwald27, Jarrod D. Hadfield28, Larry V. Hedges14, Leonhard Held20, Teck-Hua Ho29, Herbert Hoijtink30, Daniel J. Hruschka31, Kosuke Imai32, Guido W. Imbens24, John P. A. Ioannidis24, Minjeong Jeon33, James Holland Jones34, Michael Kirchler35, David Laibson36, John A. List37, Roderick J. A. Little23, Arthur Lupia23, Edouard Machery38, Scott E. Maxwell39, Michael A. McCarthy21, Don A. Moore40, Stephen L. Morgan41, Marcus R. Munafò42, Shinichi Nakagawa43, Brendan Nyhan44, Timothy H. Parker45, Luis R. Pericchi46, Marco Perugini47, Jeffrey N. Rouder48, Judith Rousseau49, Victoria Savalei50, Felix D. Schönbrodt51, Thomas Sellke52, Betsy Sinclair53, Dustin Tingley36, Trisha Van Zandt16, Simine Vazire54, Duncan J. Watts55, Christopher Winship36, Robert L. Wolpert2, Yu Xie32, Cristobal Young24, Jonathan Zinman44, Valen E. Johnson1, Valen E. Johnson18 
University of Southern California1, Duke University2, Stockholm School of Economics3, University of Virginia4, Center for Open Science5, University of Amsterdam6, University of Pennsylvania7, University of North Carolina at Chapel Hill8, University of Regensburg9, California Institute of Technology10, Research Institute of Industrial Economics11, New York University12, Cardiff University13, Northwestern University14, Mathematica Policy Research15, Ohio State University16, University of Sussex17, Texas A&M University18, Royal Holloway, University of London19, University of Zurich20, University of Melbourne21, University of Wisconsin-Madison22, University of Michigan23, Stanford University24, Rutgers University25, Columbia University26, University of Washington27, University of Edinburgh28, National University of Singapore29, Utrecht University30, Arizona State University31, Princeton University32, University of California, Los Angeles33, Imperial College London34, University of Innsbruck35, Harvard University36, University of Chicago37, University of Pittsburgh38, University of Notre Dame39, University of California, Berkeley40, Johns Hopkins University41, University of Bristol42, University of New South Wales43, Dartmouth College44, Whitman College45, University of Puerto Rico46, University of Milan47, University of California, Irvine48, Paris Dauphine University49, University of British Columbia50, Ludwig Maximilian University of Munich51, Purdue University52, Washington University in St. Louis53, University of California, Davis54, Microsoft55
TL;DR: The default P-value threshold for statistical significance is proposed to be changed from 0.05 to 0.005 for claims of new discoveries in order to reduce uncertainty in the number of discoveries.
Abstract: We propose to change the default P-value threshold for statistical significance from 0.05 to 0.005 for claims of new discoveries.

1,586 citations

Posted Content
TL;DR: This article proposed to change the default P-value threshold for statistical significance for claims of new discoveries from 0.05 to 0.005, which is the threshold used in this paper.
Abstract: We propose to change the default P-value threshold for statistical significance for claims of new discoveries from 0.05 to 0.005.

1,415 citations

Journal ArticleDOI
28 Mar 2007-JAMA
TL;DR: Tolvaptan initiated for acute treatment of patients hospitalized with heart failure had no effect on long-term mortality or heart failure-related morbidity.
Abstract: ContextVasopressin mediates fluid retention in heart failure. Tolvaptan, a vasopressin V2 receptor blocker, shows promise for management of heart failure.ObjectiveTo investigate the effects of tolvaptan initiated in patients hospitalized with heart failure.Design, Setting, and ParticipantsThe Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study With Tolvaptan (EVEREST), an event-driven, randomized, double-blind, placebo-controlled study. The outcome trial comprised 4133 patients within 2 short-term clinical status studies, who were hospitalized with heart failure, randomized at 359 North American, South American, and European sites between October 7, 2003, and February 3, 2006, and followed up during long-term treatment.InterventionWithin 48 hours of admission, patients were randomly assigned to receive oral tolvaptan, 30 mg once per day (n = 2072), or placebo (n = 2061) for a minimum of 60 days, in addition to standard therapy.Main Outcome MeasuresDual primary end points were all-cause mortality (superiority and noninferiority) and cardiovascular death or hospitalization for heart failure (superiority only). Secondary end points included changes in dyspnea, body weight, and edema.ResultsDuring a median follow-up of 9.9 months, 537 patients (25.9%) in the tolvaptan group and 543 (26.3%) in the placebo group died (hazard ratio, 0.98; 95% confidence interval [CI], 0.87-1.11; P = .68). The upper confidence limit for the mortality difference was within the prespecified noninferiority margin of 1.25 (P<.001). The composite of cardiovascular death or hospitalization for heart failure occurred in 871 tolvaptan group patients (42.0%) and 829 placebo group patients (40.2%; hazard ratio, 1.04; 95% CI, 0.95-1.14; P = .55). Secondary end points of cardiovascular mortality, cardiovascular death or hospitalization, and worsening heart failure were also not different. Tolvaptan significantly improved secondary end points of day 1 patient-assessed dyspnea, day 1 body weight, and day 7 edema. In patients with hyponatremia, serum sodium levels significantly increased. The Kansas City Cardiomyopathy Questionnaire overall summary score was not improved at outpatient week 1, but body weight and serum sodium effects persisted long after discharge. Tolvaptan caused increased thirst and dry mouth, but frequencies of major adverse events were similar in the 2 groups.ConclusionTolvaptan initiated for acute treatment of patients hospitalized with heart failure had no effect on long-term mortality or heart failure–related morbidity.Trial Registrationclinicaltrials.gov Identifier: NCT00071331Published online March 25, 2007 (doi:10.1001/jama.297.12.1319).

1,378 citations


Cited by
More filters
Book
23 Sep 2019
TL;DR: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.
Abstract: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.

21,235 citations

01 Jan 1994
TL;DR: This is also one of the factors by obtaining the soft documents of this competing paradigms in qualitative research by online as discussed by the authors. But, it will totally squander the time.
Abstract: This is likewise one of the factors by obtaining the soft documents of this competing paradigms in qualitative research by online. You might not require more become old to spend to go to the books establishment as skillfully as search for them. In some cases, you likewise do not discover the broadcast competing paradigms in qualitative research that you are looking for. It will totally squander the time.

15,524 citations

Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)

13,400 citations

Book
01 Jan 2001
TL;DR: In this article, the authors present experiments and generalized Causal inference methods for single and multiple studies, using both control groups and pretest observations on the outcome of the experiment, and a critical assessment of their assumptions.
Abstract: 1. Experiments and Generalized Causal Inference 2. Statistical Conclusion Validity and Internal Validity 3. Construct Validity and External Validity 4. Quasi-Experimental Designs That Either Lack a Control Group or Lack Pretest Observations on the Outcome 5. Quasi-Experimental Designs That Use Both Control Groups and Pretests 6. Quasi-Experimentation: Interrupted Time Series Designs 7. Regression Discontinuity Designs 8. Randomized Experiments: Rationale, Designs, and Conditions Conducive to Doing Them 9. Practical Problems 1: Ethics, Participant Recruitment, and Random Assignment 10. Practical Problems 2: Treatment Implementation and Attrition 11. Generalized Causal Inference: A Grounded Theory 12. Generalized Causal Inference: Methods for Single Studies 13. Generalized Causal Inference: Methods for Multiple Studies 14. A Critical Assessment of Our Assumptions

12,215 citations