scispace - formally typeset
Search or ask a question

Showing papers by "Thomas D. Schmittgen published in 2008"


Journal ArticleDOI
TL;DR: This protocol provides an overview of the comparative CT method for quantitative gene expression studies and various examples to present quantitative gene Expression data using this method.
Abstract: Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.

20,580 citations


Journal ArticleDOI
11 Nov 2008-PLOS ONE
TL;DR: This study is the first to identify and define miRNA expression in circulating plasma microvesicles of normal subjects, and provides a basis for future studies to determine the predictive role of peripheral blood miRNA signatures in human disease.
Abstract: Background: MicroRNAs (miRNA) are small non-coding RNAs that regulate translation of mRNA and protein. Loss or enhanced expression of miRNAs is associated with several diseases, including cancer. However, the identification of circulating miRNA in healthy donors is not well characterized. Microvesicles, also known as exosomes or microparticles, circulate in the peripheral blood and can stimulate cellular signaling. In this study, we hypothesized that under normal healthy conditions, microvesicles contain miRNAs, contributing to biological homeostasis. Methodology/Principal Findings: Microvesicles were isolated from the plasma of normal healthy individuals. RNA was isolated from both the microvesicles and matched mononuclear cells and profiled for 420 known mature miRNAs by realtime PCR. Hierarchical clustering of the data sets indicated significant differences in miRNA expression between peripheral blood mononuclear cells (PBMC) and plasma microvesicles. We observed 71 miRNAs co-expressed between microvesicles and PBMC. Notably, we found 33 and 4 significantly differentially expressed miRNAs in the plasma microvesicles and mononuclear cells, respectively. Prediction of the gene targets and associated biological pathways regulated by the detected miRNAs was performed. The majority of the miRNAs expressed in the microvesicles from the blood were predicted to regulate cellular differentiation of blood cells and metabolic pathways. Interestingly, a select few miRNAs were also predicted to be important modulators of immune function. Conclusions: This study is the first to identify and define miRNA expression in circulating plasma microvesicles of normal subjects. The data generated from this study provides a basis for future studies to determine the predictive role of peripheral blood miRNA signatures in human disease and will enable the definition of the biological processes regulated by these miRNA.

1,412 citations


Journal ArticleDOI
01 Jan 2008-Methods
TL;DR: By profiling over 200 precursor and mature miRNAs in HL60 cells induced to differentiate with 12-O-tetradecanoylphorbol-13-acetate, it was possible to identify mi RNAs who's processing is regulated during differentiation and become the gold standard of nucleic acid quantification.

583 citations


Journal ArticleDOI
TL;DR: It is shown that a global increase in the transcription of miRNA genes occurs in cirrhotic and hepatitis-positive livers and that miRNA expression may prognosticate disease outcome in HCC.
Abstract: Purpose: MicroRNA (miRNA) is a new class of small, noncoding RNA. The purpose of this study was to determine if miRNAs are differentially expressed in hepatocellular carcinoma (HCC). Experimental Design: More than 200 precursor and mature miRNAs were profiled by real-time PCR in 43 and 28 pairs of HCC and adjacent benign liver, respectively, and in normal liver specimens. Results: Several miRNAs including miR-199a, miR-21, and miR-301 were differentially expressed in the tumor compared with adjacent benign liver. A large number of mature and precursor miRNAs were up-regulated in the adjacent benign liver specimens that were both cirrhotic and hepatitis-positive compared with the uninfected, noncirrhotic specimens ( P < 0.01). Interestingly, all of the miRNAs in this comparison had increased expression and none were decreased. The expression of 95 randomly selected mRNAs was not significantly altered in the cirrhotic and hepatitis-positive specimens, suggesting a preferential increase in the transcription of miRNA. Comparing the miRNA expression in the HCC tumors with patient's survival time revealed two groups of patients; those with predominantly lower miRNA expression and poor survival and those with predominantly higher miRNA expression and good survival ( P < 0.05). A set of 19 miRNAs significantly correlated with disease outcome. A number of biological processes including cell division, mitosis, and G1-S transition were predicted to be targets of the 19 miRNAs in this group. Conclusion: We show that a global increase in the transcription of miRNA genes occurs in cirrhotic and hepatitis-positive livers and that miRNA expression may prognosticate disease outcome in HCC.

539 citations


Journal ArticleDOI
TL;DR: Up-regulation of several miR-1 targets including FoxP1, MET, and HDAC4 in primary human HCCs and down- regulation of their expression in 5-AzaC-treated HCC cells suggest their role in hepatocarcinogenesis.
Abstract: MicroRNAs (miR) are a class of small (∼21 nucleotide) noncoding RNAs that, in general, negatively regulate gene expression. Some miRs harboring CGIs undergo methylation-mediated silencing, a characteristic of many tumor suppressor genes. To identify such miRs in liver cancer, the miRNA expression profile was analyzed in hepatocellular carcinoma (HCC) cell lines treated with 5-azacytidine (DNA hypomethylating agent) and/or trichostatin A (histone deacetylase inhibitor). The results showed that these epigenetic drugs differentially regulate expression of a few miRs, particularly miR-1-1 , in HCC cells. The CGI spanning exon 1 and intron 1 of miR-1-1 was methylated in HCC cell lines and in primary human HCCs but not in matching liver tissues. The miR-1-1 gene was hypomethylated and activated in DNMT1 −/− HCT 116 cells but not in DNMT3B null cells, indicating a key role for DNMT1 in its methylation. miR-1 expression was also markedly reduced in primary human hepatocellular carcinomas compared with matching normal liver tissues. Ectopic expression of miR-1 in HCC cells inhibited cell growth and reduced replication potential and clonogenic survival. The expression of FoxP1 and MET harboring three and two miR-1 cognate sites, respectively, in their respective 3′-untranslated regions, was markedly reduced by ectopic miR-1. Up-regulation of several miR-1 targets including FoxP1, MET, and HDAC4 in primary human HCCs and down-regulation of their expression in 5-AzaC–treated HCC cells suggest their role in hepatocarcinogenesis. The inhibition of cell cycle progression and induction of apoptosis after re-expression of miR-1 are some of the mechanisms by which DNA hypomethylating agents suppress hepatocarcinoma cell growth. [Cancer Res 2008;68(13):5049–58]

447 citations


Journal ArticleDOI
01 Jan 2008-RNA
TL;DR: The data demonstrate that a large number of miRNAs are transcribed but are not processed to the mature miRNA, and in situ hybridization analysis demonstrates that these miRNA precursors are retained in the nucleus.
Abstract: Very little is known regarding regulation of microRNA (miRNA) biogenesis in normal tissues, tumors, and cell lines. Here, we profiled the expression of 225 precursor and mature miRNAs using real-time PCR and compared the expression levels to determine the processing patterns. RNA from 22 different human tissues, 37 human cancer cell lines, and 16 pancreas and liver tissues/tumors was profiled. The relationship between precursor and mature miRNA expression fell into the following four categories: (1) a direct correlation exists between the precursor and mature miRNA expression in all cells/tissues studied; (2) direct correlation of the precursor and mature miRNA exists, yet the expression is restricted to specific cell lines or tissues; (3) there is detectable expression of mature miRNA in certain cells and tissues while the precursor is expressed in all or most cells/tissues; or (4) both precursor and mature miRNA are not expressed. Pearson correlation between the precursor and mature miRNA expression was closer to one for the tissues but was closer to zero for the cell lines, suggesting that processing of precursor miRNAs is reduced in cancer cell lines. By using Northern blotting, we show that many of these miRNAs (e.g., miR-31, miR-105 and miR-128a) are processed to the precursor, but in situ hybridization analysis demonstrates that these miRNA precursors are retained in the nucleus. We provide a database of the levels of precursor and mature miRNA in a variety of cell types. Our data demonstrate that a large number of miRNAs are transcribed but are not processed to the mature miRNA.

404 citations


Journal ArticleDOI
TL;DR: A substantial role for microRNAs in anticancer drug response is supported, suggesting novel potential approaches to the improvement of chemotherapy and comparing drug potencies with microRNA expression profiles across the entire NCI-60 panel.
Abstract: MicroRNAs are strongly implicated in such processes as development, carcinogenesis, cell survival, and apoptosis. It is likely, therefore, that they can also modulate sensitivity and resistance to anticancer drugs in substantial ways. To test this hypothesis, we studied the pharmacologic roles of three microRNAs previously implicated in cancer biology (let-7i, mir-16, and mir-21) and also used in silico methods to test pharmacologic microRNA effects more broadly. In the experimental system, we increased the expression of individual microRNAs by transfecting their precursors (which are active) or suppressed the expression by transfection of antisense oligomers. In three NCI-60 human cancer cell lines, a panel of 60 lines used for anticancer drug discovery, we assessed the growth-inhibitory potencies of 14 structurally diverse compounds with known anticancer activities. Changing the cellular levels of let-7i, mir-16, and mir-21 affected the potencies of a number of the anticancer agents by up to 4-fold. The effect was most prominent with mir-21, with 10 of 28 cell-compound pairs showing significant shifts in growth-inhibitory activity. Varying mir-21 levels changed potencies in opposite directions depending on compound class; indicating that different mechanisms determine toxic and protective effects. In silico comparison of drug potencies with microRNA expression profiles across the entire NCI-60 panel revealed that approximately 30 microRNAs, including mir-21, show highly significant correlations with numerous anticancer agents. Ten of those microRNAs have already been implicated in cancer biology. Our results support a substantial role for microRNAs in anticancer drug response, suggesting novel potential approaches to the improvement of chemotherapy.

377 citations


Journal ArticleDOI
TL;DR: It is shown that C/EBP alpha mRNA is a target for miRNA-124a, a computational microRNA prediction approach and functional studies that shows that this miRNA is frequently silenced by epigenetic mechanisms in leukemia cell lines, becomes up-regulated after epigenetic treatment, and targets the C/ EBP alpha 3' untranslated region.
Abstract: Functional loss of CCAAT/enhancer binding protein alpha (C/EBP alpha), a master regulatory transcription factor in the hematopoietic system, can result in a differentiation block in granulopoiesis and thus contribute to leukemic transformation. Here, we show the effect of epigenetic aberrations in regulating C/EBP alpha expression in acute myeloid leukemia (AML). Comprehensive DNA methylation analyses of the CpG island of C/EBP alpha identified a densely methylated upstream promoter region in 51% of AML patients. Aberrant DNA methylation was strongly associated with two generally prognostically favorable cytogenetic subgroups: inv(16) and t(15;17). Surprisingly, while epigenetic treatment increased C/EBP alpha mRNA levels in vitro, C/EBP alpha protein levels decreased. Using a computational microRNA (miRNA) prediction approach and functional studies, we show that C/EBP alpha mRNA is a target for miRNA-124a. This miRNA is frequently silenced by epigenetic mechanisms in leukemia cell lines, becomes up-regulated after epigenetic treatment, and targets the C/EBP alpha 3' untranslated region. In this way, C/EBP alpha protein expression is reduced in a posttranscriptional manner. Our results indicate that epigenetic alterations of C/EBP alpha are a frequent event in AML and that epigenetic treatment can result in down-regulation of a key hematopoietic transcription factor.

161 citations


Journal ArticleDOI
TL;DR: It is hypothesized that trisomic 21 gene dosage overexpression of Hsa21-derived miRNAs results in the decreased expression of specific target proteins and contribute, in part, to features of the neuronal and cardiac DS phenotype.

152 citations


Journal ArticleDOI
TL;DR: Evidence of post‐transcriptional regulation of miRNA expression in cancer is found and examples of altered miRNA processing in cancer are found.
Abstract: microRNA (miRNA) is a class of small, noncoding, regulatory RNAs. The ∼ 21 nt mature miRNA is processed from larger precursor molecules following a coordinated series of events. In theory, miRNA processing may be regulated at any of these steps. A growing body of evidence has demonstrated various steps in the miRNA biogenesis process for which regulation occurs. RNA editing of miRNA precursors, SNPs or mutations in the miRNA precursors, regulation by RNA binding proteins, alterations in the levels of key processing proteins, as well as a number of unknown mechanisms contribute to the regulation of miRNA processing. This article reviews the available literature on the regulation of miRNA processing that occurs within normal cells, during development or in diseases such as cancer.

113 citations


Book ChapterDOI
TL;DR: Methods of analysis are described to present real-time PCR data as heat maps and clustered similar to the presentation of cDNA microarray data, and an example is provided to profile the expression of over 200 microRNA precursors using high-throughput real- time PCR.
Abstract: Real-time PCR is presently the gold standard of gene expression quantification. Configuration of real-time PCR instruments with 384-well reaction blocks, enables the instrument to be used essentially as a low-density array. While PCR will never rival the throughput of microchip arrays, in situations where one is interested in assaying several hundreds of genes, high throughput, real-time PCR is an excellent alternative to microchip arrays. By combining SYBR green detection and 5 microL reaction volume, the associated costs of high-throughput real-time PCR are comparable to microarrays. Described here is a complete protocol to perform real-time PCR in a 384-well configuration. Examples are provided to access numerous PCR primer sequences that may be used for high-throughput real-time PCR. Methods of analysis are described to present real-time PCR data as heat maps and clustered similar to the presentation of cDNA microarray data. An example is provided to profile the expression of over 200 microRNA precursors using high-throughput real-time PCR.

Journal ArticleDOI
TL;DR: In this article, the histologic features, Ki67 index, p53, bcl-2, and miRNA expression were studied in 15 leiomyosarcomas (11 primary lesions and 4 metastases), 8 leioma, and 10 cases of benign metastasizing leisomyoma (9 pulmonary lesions and 1 primary uterine lesion).
Abstract: Benign metastasizing leiomyomas are rare tumors, which are typically found in the lungs and, thus, might be confused with leiomyosarcomas. Further, it is not clear whether the term "benign metastasizing leiomyoma" is a misnomer and whether these lesions actually represent low-grade malignant tumors that have a low proliferation index. Micro-RNAs (miRNAs) are small noncoding RNAs, which repress translation. The altered expression of miRNAs has been strongly correlated with the malignant phenotype. In this study, the histologic features, Ki67 index, p53, bcl-2, and miRNA expression were studied in 15 leiomyosarcomas (11 primary lesions and 4 metastases), 8 leiomyomas, and 10 cases of benign metastasizing leiomyoma (9 pulmonary lesions and 1 primary uterine lesion). As expected, the Ki67 index for the benign metastasizing leiomyomas was equivalent to that for the leiomyomas and statistically less than that for the leiomyosarcomas. The mean index was 2.3% (range: 0.9% to 8.8%) for the leiomyomas and 3.4% (range: 0.7% to 8.1%) for the benign metastasizing leiomyomas compared with 28.6% (range: 14.4% to 62.0%) for the leiomyosarcomas (P<0.025). The miRNA, miR-221, which has been associated with a variety of cancers, was detected by in situ hybridization in 13/15 leiomyosarcomas, 0/8 leiomyomas, and 0/10 benign metastasizing leiomyomas. In conclusion, benign metastasizing leiomyomas are indeed most likely benign lesions, and up-regulation of miR-221 expression is an accurate way to differentiate leiomyosarcoma from benign metastasizing leiomyoma.