scispace - formally typeset
Search or ask a question
Author

Thomas David Novlan

Bio: Thomas David Novlan is an academic researcher from Samsung. The author has contributed to research in topics: Cellular network & User equipment. The author has an hindex of 40, co-authored 91 publications receiving 5479 citations. Previous affiliations of Thomas David Novlan include University of Texas at Austin & AT&T Labs.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: New theoretical models for understanding the heterogeneous cellular networks of tomorrow are discussed, and the practical constraints and challenges that operators must tackle in order for these networks to reach their potential are discussed.
Abstract: The proliferation of internet-connected mobile devices will continue to drive growth in data traffic in an exponential fashion, forcing network operators to dramatically increase the capacity of their networks. To do this cost-effectively, a paradigm shift in cellular network infrastructure deployment is occurring away from traditional (expensive) high-power tower-mounted base stations and towards heterogeneous elements. Examples of heterogeneous elements include microcells, picocells, femtocells, and distributed antenna systems (remote radio heads), which are distinguished by their transmit powers/ coverage areas, physical size, backhaul, and propagation characteristics. This shift presents many opportunities for capacity improvement, and many new challenges to co-existence and network management. This article discusses new theoretical models for understanding the heterogeneous cellular networks of tomorrow, and the practical constraints and challenges that operators must tackle in order for these networks to reach their potential.

911 citations

Journal ArticleDOI
TL;DR: It is shown that partial channel inversion should be used at low signal-to-interference-plus-noise ratio (SINR), while full power transmission is optimal at higher SINR, and the implications for power control are focused on.
Abstract: Cellular uplink analysis has typically been undertaken by either a simple approach that lumps all interference into a single deterministic or random parameter in a Wyner-type model, or via complex system level simulations that often do not provide insight into why various trends are observed. This paper proposes a novel middle way using point processes that is both accurate and also results in easy-to-evaluate integral expressions based on the Laplace transform of the interference. We assume mobiles and base stations are randomly placed in the network with each mobile pairing up to its closest base station. Compared to related recent work on downlink analysis, the proposed uplink model differs in two key features. First, dependence is considered between user and base station point processes to make sure each base station serves a single mobile in the given resource block. Second, per-mobile power control is included, which further couples the transmission of mobiles due to location-dependent channel inversion. Nevertheless, we succeed in deriving the coverage (equivalently outage) probability of a typical link in the network. This model can be used to address a wide variety of system design questions in the future. In this paper we focus on the implications for power control and show that partial channel inversion should be used at low signal-to-interference-plus-noise ratio (SINR), while full power transmission is optimal at higher SINR.

524 citations

Journal ArticleDOI
TL;DR: This paper analytically evaluating the two main types of FFR deployments - Strict FFR and Soft Frequency Reuse - using a Poisson point process to model the base station locations and observes that FFR provides an increase in the sum-rate as well as the well-known benefit of improved coverage for cell-edge users.
Abstract: Fractional frequency reuse (FFR) is an interference management technique well-suited to OFDMA-based cellular networks wherein the bandwidth of the cells is partitioned into regions with different frequency reuse factors. To date, FFR techniques have been typically been evaluated through system-level simulations using a hexagonal grid for the base station locations. This paper instead focuses on analytically evaluating the two main types of FFR deployments - Strict FFR and Soft Frequency Reuse (SFR) - using a Poisson point process to model the base station locations. The results are compared with the standard grid model and an actual urban deployment. Under reasonable special cases for modern cellular networks, our results reduce to simple closed-form expressions, which provide insight into system design guidelines and the relative merits of Strict FFR, SFR, universal reuse, and fixed frequency reuse. Finally, a SINR-proportional resource allocation strategy is proposed based on the analytical expressions and we observe that FFR provides an increase in the sum-rate as well as the well-known benefit of improved coverage for cell-edge users.

432 citations

Proceedings ArticleDOI
01 Dec 2010
TL;DR: A detailed picture of the tradeoffs associated with the FFR systems are presented, showing that Strict FFR provides the greatest overall network throughput and highest cell-edge user SINR, while SFR balances the requirements of interference reduction and resource efficiency.
Abstract: Fractional frequency reuse (FFR) is an interference coordination technique well-suited to OFDMA based wireless networks wherein cells are partitioned into spatial regions with different frequency reuse factors. This work focuses on evaluating the two main types of FFR deployments: Strict FFR and Soft Frequency Reuse (SFR). Relevant metrics are discussed, including outage probability, network throughput, spectral efficiency, and average cell- edge user SINR. In addition to analytical expressions for outage probability, system simulations are used to compare Strict FFR and SFR with universal frequency reuse based on a typical OFDMA deployment and uniformly distributed users. Based on the analysis and numerical results, system design guidelines and a detailed picture of the tradeoffs associated with the FFR systems are presented, showing that Strict FFR provides the greatest overall network throughput and highest cell-edge user SINR, while SFR balances the requirements of interference reduction and resource efficiency.

227 citations

Patent
30 Apr 2014
TL;DR: In this paper, a method for configuring one or multiple pools of D2D communication resources by an eNodeB (eNB) is presented, where the first UE is configured to transmit D2DM messages.
Abstract: A method includes configuring one or multiple pools of Device-to-Device (D2D) communication resources by an eNodeB (eNB). The method also includes signaling of the configured pool(s) of D2D communication resources by the eNB to a first User Equipment (UE) and a plurality of UEs using a common broadcast channel; and sending a request for one or multiple D2D communication resources to an eNB by the first UE configured to transmit D2D messages. The method also includes determining one or multiple resources for D2D communication by an eNB for the first UE. The method also includes communicating D2D resource allocation information to the first UE.

219 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate, and the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.
Abstract: Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.

3,309 citations

Journal ArticleDOI
TL;DR: A general framework to evaluate the coverage and rate performance in mmWave cellular networks is proposed, and the results show that dense mmWave networks can achieve comparable coverage and much higher data rates than conventional UHF cellular systems, despite the presence of blockages.
Abstract: Millimeter wave (mmWave) holds promise as a carrier frequency for fifth generation cellular networks. Because mmWave signals are sensitive to blockage, prior models for cellular networks operated in the ultra high frequency (UHF) band do not apply to analyze mmWave cellular networks directly. Leveraging concepts from stochastic geometry, this paper proposes a general framework to evaluate the coverage and rate performance in mmWave cellular networks. Using a distance-dependent line-of-site (LOS) probability function, the locations of the LOS and non-LOS base stations are modeled as two independent non-homogeneous Poisson point processes, to which different path loss laws are applied. Based on the proposed framework, expressions for the signal-to-noise-and-interference ratio (SINR) and rate coverage probability are derived. The mmWave coverage and rate performance are examined as a function of the antenna geometry and base station density. The case of dense networks is further analyzed by applying a simplified system model, in which the LOS region of a user is approximated as a fixed LOS ball. The results show that dense mmWave networks can achieve comparable coverage and much higher data rates than conventional UHF cellular systems, despite the presence of blockages. The results suggest that the cell size to achieve the optimal SINR scales with the average size of the area that is LOS to a user.

1,342 citations

Journal ArticleDOI
TL;DR: This tutorial article overviews the history of femtocells, demystifies their key aspects, and provides a preview of the next few years, which the authors believe will see a rapid acceleration towards small cell technology.
Abstract: Femtocells, despite their name, pose a potentially large disruption to the carefully planned cellular networks that now connect a majority of the planet's citizens to the Internet and with each other. Femtocells - which by the end of 2010 already outnumbered traditional base stations and at the time of publication are being deployed at a rate of about five million a year - both enhance and interfere with this network in ways that are not yet well understood. Will femtocells be crucial for offloading data and video from the creaking traditional network? Or will femtocells prove more trouble than they are worth, undermining decades of careful base station deployment with unpredictable interference while delivering only limited gains? Or possibly neither: are femtocells just a "flash in the pan"; an exciting but short-lived stage of network evolution that will be rendered obsolete by improved WiFi offloading, new backhaul regulations and/or pricing, or other unforeseen technological developments? This tutorial article overviews the history of femtocells, demystifies their key aspects, and provides a preview of the next few years, which the authors believe will see a rapid acceleration towards small cell technology. In the course of the article, we also position and introduce the articles that headline this special issue.

1,277 citations

Journal ArticleDOI
01 Jan 2014
TL;DR: In this paper, the authors present a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges.
Abstract: A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-ouput (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field.

1,171 citations

Journal ArticleDOI
TL;DR: This article presents a comprehensive survey on the literature related to stochastic geometry models for single-tier as well as multi-tier and cognitive cellular wireless networks, and discusses the open research challenges and future research directions.
Abstract: For more than three decades, stochastic geometry has been used to model large-scale ad hoc wireless networks, and it has succeeded to develop tractable models to characterize and better understand the performance of these networks. Recently, stochastic geometry models have been shown to provide tractable yet accurate performance bounds for multi-tier and cognitive cellular wireless networks. Given the need for interference characterization in multi-tier cellular networks, stochastic geometry models provide high potential to simplify their modeling and provide insights into their design. Hence, a new research area dealing with the modeling and analysis of multi-tier and cognitive cellular wireless networks is increasingly attracting the attention of the research community. In this article, we present a comprehensive survey on the literature related to stochastic geometry models for single-tier as well as multi-tier and cognitive cellular wireless networks. A taxonomy based on the target network model, the point process used, and the performance evaluation technique is also presented. To conclude, we discuss the open research challenges and future research directions.

1,065 citations