scispace - formally typeset
Search or ask a question
Author

Thomas E. Cheatham

Bio: Thomas E. Cheatham is an academic researcher from University of Utah. The author has contributed to research in topics: Molecular dynamics & Nucleic acid structure. The author has an hindex of 58, co-authored 156 publications receiving 32976 citations. Previous affiliations of Thomas E. Cheatham include Free University of Berlin & University of California, San Francisco.


Papers
More filters
Journal ArticleDOI
TL;DR: The development, current features, and some directions for future development of the Amber package of computer programs, which contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of proteins, nucleic acids, and carbohydrates.
Abstract: We describe the development, current features, and some directions for future development of the Amber package of computer programs. This package evolved from a program that was constructed in the late 1970s to do Assisted Model Building with Energy Refinement, and now contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of proteins, nucleic acids, and carbohydrates.

7,672 citations

Journal ArticleDOI
TL;DR: PTRAJ and its successor CPPTRAJ are described, two complementary, portable, and freely available computer programs for the analysis and processing of time series of three-dimensional atomic positions and the data therein derived.
Abstract: We describe PTRAJ and its successor CPPTRAJ, two complementary, portable, and freely available computer programs for the analysis and processing of time series of three-dimensional atomic positions (i.e., coordinate trajectories) and the data therein derived. Common tools include the ability to manipulate the data to convert among trajectory formats, process groups of trajectories generated with ensemble methods (e.g., replica exchange molecular dynamics), image with periodic boundary conditions, create average structures, strip subsets of the system, and perform calculations such as RMS fitting, measuring distances, B-factors, radii of gyration, radial distribution functions, and time correlations, among other actions and analyses. Both the PTRAJ and CPPTRAJ programs and source code are freely available under the GNU General Public License version 3 and are currently distributed within the AmberTools 12 suite of support programs that make up part of the Amber package of computer programs (see http://ambe...

4,382 citations

Journal ArticleDOI
TL;DR: A historical perspective on the application of molecular dynamics to biological macromolecules is presented and recent developments combining state-of-the-art force fields with continuum solvation calculations have allowed for the fourth era of MD applications in which one can often derive both accurate structure and accurate relative free energies from molecular dynamics trajectories.
Abstract: A historical perspective on the application of molecular dynamics (MD) to biological macromolecules is presented. Recent developments combining state-of-the-art force fields with continuum solvation calculations have allowed us to reach the fourth era of MD applications in which one can often derive both accurate structure and accurate relative free energies from molecular dynamics trajectories. We illustrate such applications on nucleic acid duplexes, RNA hairpins, protein folding trajectories, and protein−ligand, protein−protein, and protein−nucleic acid interactions.

3,965 citations

Journal ArticleDOI
TL;DR: The development, current features, and some directions for future development of the AMBER package of computer programs are described, embodying a number of the powerful tools of modern computational chemistry-molecular dynamics and free energy calculations.

2,953 citations

Journal ArticleDOI
TL;DR: These efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework are described, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models.
Abstract: Alkali (Li+, Na+, K+, Rb+, and Cs+) and halide (F−, Cl−, Br−, and I−) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within t...

2,550 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Abstract: The previously developed particle mesh Ewald method is reformulated in terms of efficient B‐spline interpolation of the structure factors This reformulation allows a natural extension of the method to potentials of the form 1/rp with p≥1 Furthermore, efficient calculation of the virial tensor follows Use of B‐splines in place of Lagrange interpolation leads to analytic gradients as well as a significant improvement in the accuracy We demonstrate that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N) For biomolecular systems with many thousands of atoms this method permits the use of Ewald summation at a computational cost comparable to that of a simple truncation method of 10 A or less

17,897 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s is described, which is a very fast program for molecular dynamics simulation.
Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simulations. The package includes about 100 utility and analysis programs. GROMACS is in the public domain and distributed (with source code and documentation) under the GNU General Public License. It is maintained by a group of developers from the Universities of Groningen, Uppsala, and Stockholm, and the Max Planck Institute for Polymer Research in Mainz. Its Web site is http://www.gromacs.org.

13,116 citations