scispace - formally typeset
Search or ask a question
Author

Thomas E. Rufford

Other affiliations: University of Western Australia
Bio: Thomas E. Rufford is an academic researcher from University of Queensland. The author has contributed to research in topics: Adsorption & Catalysis. The author has an hindex of 32, co-authored 104 publications receiving 3829 citations. Previous affiliations of Thomas E. Rufford include University of Western Australia.
Topics: Adsorption, Catalysis, Activated carbon, Coal, Carbon


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of conventional and developing gas processing technologies for CO 2 and N 2 removal from natural gas is provided in this paper, where the authors consider process technologies based on absorption, distillation, adsorption, membrane separation and hydrates.

514 citations

Journal ArticleDOI
TL;DR: In this article, a new type of nitrogen-doped two-dimensional MXene (N-Ti3C2Tx) was synthesized by post-etch annealing in ammonia as a promising electrode material for supercapacitors.

462 citations

Journal ArticleDOI
TL;DR: In this paper, two-electrode sandwich type supercapacitor cells containing 1 M H2SO4 were used to construct sugar cane bagasse carbons with ZnCl2 activation.

451 citations

Journal ArticleDOI
TL;DR: In this article, a two-electrode cell with a specific capacitance as high as 368 F g−1 was observed, with rectangular cyclic voltammetry curves and stable performance over 10,000 cycles at a cell potential of 1.2 V and current load of 5 A G−1.

420 citations

Journal ArticleDOI
TL;DR: In this article, the authors examine the state-of-the-art in electrochemical CO2 reduction technologies, and highlight how the efficiency of CO2R processes can be improved through (i) electrolyzer configuration, (ii) electrode structure, (iii) electrolyte selection, pH control, and (iv) the electrolyzer's operating pressure and temperature.
Abstract: Electrochemical CO2 reduction (CO2R) is one of several promising strategies to mitigate CO2 emissions. Electrochemical processes operate at mild conditions, can be tuned to selective products, allow modular design, and provide opportunities to integrate renewable electricity with CO2 reduction in carbon-intensive manufacturing industries such as iron and steel making. In recent years, significant advances have been achieved in the development of highly efficient and selective electrocatalysts for CO2R. However, to realize fully the potential benefits of new electrocatalysts in low cost, large scale CO2R electrolyzers requires advances in design and engineering of the CO2R process. In this review, we examine the state-of-the-art in electrochemical CO2R technologies, and highlight how the efficiency of CO2R processes can be improved through (i) electrolyzer configuration, (ii) electrode structure, (iii) electrolyte selection, (iv) pH control, and (v) the electrolyzer's operating pressure and temperature. Although a comprehensive review of catalytic materials is beyond this review's scope, we illustrate how other engineering and design decisions may also influence CO2R reaction pathways because of effects on mass transfer rates, the electrode surface chemistry, interactions with intermediate reaction species, and rates of charge transfer.

248 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Abstract: [Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China.;Cheng, HM (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;cheng@imr.ac.cn

4,105 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: This review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes, and summarizes the key aspects of various carbon materials synthesized for use in supercapacitors.
Abstract: Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.

2,140 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed several key issues for improving the energy densities of supercapacitors and some mutual relationships among various effecting parameters, and challenges and perspectives in this exciting field are discussed.
Abstract: In recent years, tremendous research effort has been aimed at increasing the energy density of supercapacitors without sacrificing high power capability so that they reach the levels achieved in batteries and at lowering fabrication costs For this purpose, two important problems have to be solved: first, it is critical to develop ways to design high performance electrode materials for supercapacitors; second, it is necessary to achieve controllably assembled supercapacitor types (such as symmetric capacitors including double-layer and pseudo-capacitors, asymmetric capacitors, and Li-ion capacitors) The explosive growth of research in this field makes this review timely Recent progress in the research and development of high performance electrode materials and high-energy supercapacitors is summarized Several key issues for improving the energy densities of supercapacitors and some mutual relationships among various effecting parameters are reviewed, and challenges and perspectives in this exciting field are also discussed This provides fundamental insight into supercapacitors and offers an important guideline for future design of advanced next-generation supercapacitors for industrial and consumer applications

1,761 citations

Journal Article
TL;DR: In this paper, the authors presented a method to detect the presence of a tumor in the human brain using EPFL-206025 data set, which was created on 2015-03-03, modified on 2017-05-12
Abstract: Note: Times Cited: 875 Reference EPFL-ARTICLE-206025doi:10.1021/cr0501846View record in Web of Science URL: ://WOS:000249839900009 Record created on 2015-03-03, modified on 2017-05-12

1,704 citations