scispace - formally typeset
Search or ask a question
Author

Thomas F. Irvine

Bio: Thomas F. Irvine is an academic researcher from Stony Brook University. The author has contributed to research in topics: Heat transfer & Viscometer. The author has an hindex of 19, co-authored 59 publications receiving 2726 citations. Previous affiliations of Thomas F. Irvine include University of Minnesota & State University of New York System.


Papers
More filters
Book
15 Aug 2003
TL;DR: Advances in Heat Transfer as mentioned in this paper provides in-depth review articles over a broader scope than in traditional journals or texts, which serve as a broad review for experts in the field and are also of great interest to non-specialists who need to keep up to date with the results of the latest research.
Abstract: Advances in Heat Transfer fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than in traditional journals or texts. The articles, which serve as a broad review for experts in the field are also of great interest to non-specialists who need to keep up-to-date with the results of the latest research. This serial is essential reading for all mechanical, chemical, and industrial engineers working in the field of heat transfer, or in graduate schools or industry. * Compiles the expert opinions of leaders in the industry* Fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than in traditional journals or texts* Essential reading for all mechanical, chemical, and industrial engineers working in the field of heat transfer, or in graduate schools or industry

1,591 citations

Journal ArticleDOI
TL;DR: A review of research on heat transfer published during the preceding year is reviewed in this article, divided into sections dealing with following subjects: donduction, channel flow, boundary-layer flow, flow with separated regions, transfer mechanisms, natural convection, convection from rotating surfaces, combined heat and mass transfer, phase changes, radiation, liquid metals, low-density heat transfer, measurement techniques, heat-transfer applications, and thermodynamic and transport properties.

105 citations

Journal ArticleDOI
TL;DR: In this paper, total hemispherical emissivities were measured for Inconel 718 as a function of sample temperature, and measurements were made for both unoxidized and oxidized samples.

91 citations

Book
01 Jan 1995
TL;DR: In this paper, the authors define the principles of radiation, thermal radiation radiation heat transfer, formulation methods of solution special treatises, and applications of the Monte Carlo method for two-dimensional systems.
Abstract: Part 1 Principles of radiation: thermal radiation radiation heat transfer. Part 2 Principles of Monte Carlo methods: formulation methods of solution special treatises. Part 3 Applications of the Monte Carlo method: two-dimensional systems some industrial applications references applications on disk list of variables in computer programs.

89 citations

Journal ArticleDOI
TL;DR: In this paper, local and average heat transfer coefficients and the temperatare field in the duct wall have been determined for the condition of constant heat generation per unit volume of the duct walls.
Abstract: Friction factors were measured for a duct whose cross section has the shape of an isosceles triangle witb a side ratio 5 to 1 in the fully developed now region ior laminar, transitional, and tarbulent conditions. In addition. local and average heat-transfer coefficients and the temperatare field in the duct wall have been determined for the condition of constant heat generation per unit volume of the duct walls. Friction factors in laminar flow agreed well with analytical predictions. In the turbulent flow range they were by 20 per cent lower than values calculated from relations for a round tube with the use of the "hydraulic diameter." Heat-transfer coefficients averaged over the circumference of the duct were only half as large as values calculated from round tube relations in the Reynolds number range from 4300 to 24,000. The measurements also revealed that thermal starting lengths were in excess of 100 diameters. In round tubes a length of 10 to 20 diame ters has been found sufficient to develop the temperature field. (auth)

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A critical review of the available literature on the major thermal issues for lithium-ion batteries is presented in this article, where specific attention is paid to the effects of temperature and thermal management on capacity/power fade, thermal runaway, and pack electrical imbalance.
Abstract: Lithium-ion batteries are well-suited for fully electric and hybrid electric vehicles due to their high specific energy and energy density relative to other rechargeable cell chemistries. However, these batteries have not been widely deployed commercially in these vehicles yet due to safety, cost, and poor low temperature performance, which are all challenges related to battery thermal management. In this paper, a critical review of the available literature on the major thermal issues for lithium-ion batteries is presented. Specific attention is paid to the effects of temperature and thermal management on capacity/power fade, thermal runaway, and pack electrical imbalance and to the performance of lithium-ion cells at cold temperatures. Furthermore, insights gained from previous experimental and modeling investigations are elucidated. These include the need for more accurate heat generation measurements, improved modeling of the heat generation rate, and clarity in the relative magnitudes of the various thermal effects observed at high charge and discharge rates seen in electric vehicle applications. From an analysis of the literature, the requirements for lithium-ion thermal management systems for optimal performance in these applications are suggested, and it is clear that no existing thermal management strategy or technology meets all these requirements.

1,458 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of variations in the temperature and volume fraction on the steady-state effective thermal conductivity of two different nanoparticle suspensions were examined and the results indicated that the nanoparticle material, diameter, volume fraction, and bulk temperature, all have a significant impact on the effective thermalconductivity of these suspensions.
Abstract: An experimental investigation was conducted to examine the effects of variations in the temperature and volume fraction on the steady-state effective thermal conductivity of two different nanoparticle suspensions. Copper and aluminum oxide, CuO and Al2O3, nanoparticles with area weighted diameters of 29 and 36nm, respectively, were blended with distilled water at 2%, 4%, 6%, and 10% volume fractions and the resulting suspensions were evaluated at temperatures ranging from 27.5to34.7°C. The results indicate that the nanoparticle material, diameter, volume fraction, and bulk temperature, all have a significant impact on the effective thermal conductivity of these suspensions. The 6% volume fraction of CuO nanoparticle/distilled water suspension resulted in an increase in the effective thermal conductivity of 1.52 times that of pure distilled water and the 10% Al2O3 nanoparticle/distilled water suspension increased the effective thermal conductivity by a factor of 1.3, at a temperature of 34°C. A two-factor ...

749 citations

Journal ArticleDOI
TL;DR: In this article, the effect of finite thermal conductivity and recirculation in droplets can be taken into account using the so-called parabolic model, which is a reasonable compromise between accuracy and CPU efficiency.

724 citations

Journal ArticleDOI
TL;DR: In this paper, the mechanisms that govern the transport of ions, moisture, and gas are described, and different chemical degradation phenomena are reviewed, such as sulfate attack from external sources and formation of ettringite and thaumasite.

562 citations

Journal ArticleDOI
TL;DR: In this article, a review of phase-change materials (PCMs) behavior prediction is presented, based on the first law and on the second law of thermodynamics, with selected results for several configurations, from numerous authors.
Abstract: Energy storage components improve the energy efficiency of systems by reducing the mismatch between supply and demand. For this purpose, phase-change materials are particularly attractive since they provide a high-energy storage density at a constant temperature which corresponds to the phase transition temperature of the material. Nevertheless, the incorporation of phase-change materials (PCMs) in a particular application calls for an analysis that will enable the researcher to optimize performances of systems. Due to the non-linear nature of the problem, numerical analysis is generally required to obtain appropriate solutions for the thermal behavior of systems. Therefore, a large amount of research has been carried out on PCMs behavior predictions. The review will present models based on the first law and on the second law of thermodynamics. It shows selected results for several configurations, from numerous authors so as to enable one to start his/her research with an exhaustive overview of the subject. This overview stresses the need to match experimental investigations with recent numerical analyses since in recent years, models mostly rely on other models in their validation stages.

559 citations