scispace - formally typeset
Search or ask a question
Author

Thomas F. Schilling

Bio: Thomas F. Schilling is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Zebrafish & Neural crest. The author has an hindex of 57, co-authored 150 publications receiving 20932 citations. Previous affiliations of Thomas F. Schilling include University of California, Berkeley & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: A series of stages for development of the embryo of the zebrafish, Danio (Brachydanio) rerio is described, providing for flexibility and continued evolution of the staging series as the authors learn more about development in this species.
Abstract: We describe a series of stages for development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad periods of embryogenesis--the zygote, cleavage, blastula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the changing spectrum of major developmental processes that occur during the first 3 days after fertilization, and we review some of what is known about morphogenesis and other significant events that occur during each of the periods. Stages subdivide the periods. Stages are named, not numbered as in most other series, providing for flexibility and continued evolution of the staging series as we learn more about development in this species. The stages, and their names, are based on morphological features, generally readily identified by examination of the live embryo with the dissecting stereomicroscope. The descriptions also fully utilize the optical transparancy of the live embryo, which provides for visibility of even very deep structures when the embryo is examined with the compound microscope and Nomarski interference contrast illumination. Photomicrographs and composite camera lucida line drawings characterize the stages pictorially. Other figures chart the development of distinctive characters used as staging aid signposts.

10,612 citations

Journal ArticleDOI
TL;DR: The work presented here suggests that snail1 is involved in morphogenetic events during gastrulation, somitogenesis and development of the cephalic neural crest, and that no tail may act as a positive regulator of snail1.
Abstract: Mesoderm formation is critical for the establishment of the animal body plan and in Drosophila requires the snail gene. This report concerns the cloning and expression pattern of the structurally similar gene snail1 from zebrafish. In situ hybridization shows that the quantity of snail1 RNA increases at the margin of the blastoderm in cells that involute during gastrulation. As gastrulation begins, snail1 RNA disappears from the dorsal axial mesoderm and becomes restricted to the paraxial mesoderm and the tail bud. snail1 RNA increases in cells that define the posterior border of each somite and then disappears when somitic cells differentiate. Later in development, expression appears in cephalic neural crest derivatives. Many snail1-expressing cells were missing from mutant spadetail embryos and the quantity of snail1 RNA was greatly reduced in mutant no tail embryos. The work presented here suggests that snail1 is involved in morphogenetic events during gastrulation, somitogenesis and development of the cephalic neural crest, and that no tail may act as a positive regulator of snail1.

953 citations

Journal ArticleDOI
TL;DR: Lineages of cells labeled by intracellular injection of tracer dye during early zebrafish development are analyzed to learn when cells become allocated to particular fates during development, and how the fate map is organized.
Abstract: We have analyzed lineages of cells labeled by intracellular injection of tracer dye during early zebrafish development to learn when cells become allocated to particular fates during development, and how the fate map is organized. The earliest lineage restriction was described previously, and segregates the yolk cell from the blastoderm in the midblastula. After one or two more cell divisions, the lineages of epithelial enveloping layer (EVL) cells become restricted to generate exclusively periderm. Following an additional division in the late blastula, deep layer (DEL) cells generate clones that are restricted to single deep embryonic tissues. The appearance of both the EVL and DEL restrictions could be causally linked to blastoderm morphogenesis during epiboly. A fate map emerges as the DEL cell lineages become restricted in the late blastula. It is similar in organization to that of an amphibian embryo. DEL cells located near the animal pole of the early gastrula give rise to ectodermal fates (including the definitive epidermis). Cells located near the blastoderm margin give rise to mesodermal and endodermal fates. Dorsal cells in the gastrula form dorsal and anterior structures in the embryo, and ventral cells in the gastrula form dorsal, ventral and posterior structures. The exact locations of progenitors of single cell types and of local regions of the embryo cannot be mapped at the stages we examined, because of variable cell rearrangements during gastrulation.

687 citations

Journal ArticleDOI
TL;DR: Upper-limb RIPC performed while patients were under propofol-induced anesthesia did not show a relevant benefit among patients undergoing elective cardiac surgery.
Abstract: BackgroundRemote ischemic preconditioning (RIPC) is reported to reduce biomarkers of ischemic and reperfusion injury in patients undergoing cardiac surgery, but uncertainty about clinical outcomes remains. MethodsWe conducted a prospective, double-blind, multicenter, randomized, controlled trial involving adults who were scheduled for elective cardiac surgery requiring cardiopulmonary bypass under total anesthesia with intravenous propofol. The trial compared upper-limb RIPC with a sham intervention. The primary end point was a composite of death, myocardial infarction, stroke, or acute renal failure up to the time of hospital discharge. Secondary end points included the occurrence of any individual component of the primary end point by day 90. ResultsA total of 1403 patients underwent randomization. The full analysis set comprised 1385 patients (692 in the RIPC group and 693 in the sham-RIPC group). There was no significant between-group difference in the rate of the composite primary end point (99 patie...

531 citations

Journal ArticleDOI
TL;DR: It is suggested that arch precursors may be specified as to their eventual fates before the major morphogenetic movements that form the arch primordia, as in the fashion of vertebrate rhombomeres or segmental lineage compartments in Drosophila.
Abstract: In zebrafish, the segmental series of pharyngeal arches is formed predominantly by two migratory cell types, neural crest and paraxial mesoderm, which arise in the early embryo. Neural crest cells migrate ventrally out of the neuroepithelium and into the arches to form cartilage, neurons, glia and pigment cells. Surrounding mesoderm generates muscles and endothelia. We labeled individual pharyngeal precursor cells with fluorescent dyes and found that their clonal progeny were confined to single segments and generated single cell types. When a neural crest or mesodermal cell was marked before migration into the pharynx, its progeny dispersed but generally remained confined to a single arch primordium. Such segmental restrictions arose first in the most rostral arches, mandibular and hyoid, and progressed caudally. The phenotypes of progeny generated by single cells were examined in the mandibular arch. Clones derived from premigratory neural crest cells generally did not contribute to more than one cell type. Further, the progenitors of some cell types were spatially separated in the premigratory crest. In particular, neurogenic crest cells were situated further laterally than cells that generate cartilage and connective tissues, while pigment and glial cell progenitors were more evenly distributed. Based on these results we suggest that arch precursors may be specified as to their eventual fates before the major morphogenetic movements that form the arch primordia. Further, cell movements are restricted during segmentation establishing a group of arch precursors as a unit of developmental patterning, as in the fashion of vertebrate rhombomeres or segmental lineage compartments in Drosophila.

490 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A series of stages for development of the embryo of the zebrafish, Danio (Brachydanio) rerio is described, providing for flexibility and continued evolution of the staging series as the authors learn more about development in this species.
Abstract: We describe a series of stages for development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad periods of embryogenesis--the zygote, cleavage, blastula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the changing spectrum of major developmental processes that occur during the first 3 days after fertilization, and we review some of what is known about morphogenesis and other significant events that occur during each of the periods. Stages subdivide the periods. Stages are named, not numbered as in most other series, providing for flexibility and continued evolution of the staging series as we learn more about development in this species. The stages, and their names, are based on morphological features, generally readily identified by examination of the live embryo with the dissecting stereomicroscope. The descriptions also fully utilize the optical transparancy of the live embryo, which provides for visibility of even very deep structures when the embryo is examined with the compound microscope and Nomarski interference contrast illumination. Photomicrographs and composite camera lucida line drawings characterize the stages pictorially. Other figures chart the development of distinctive characters used as staging aid signposts.

10,612 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: Seurat is a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns, and correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups.
Abstract: Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

3,465 citations

Journal Article
30 Mar 1999-Genomics
TL;DR: Cooke et al. as mentioned in this paper proposed a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum, focusing on the regulatory complexity of eukaryotic genes, and showed how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the development of new gene functions.

3,184 citations