scispace - formally typeset
Search or ask a question
Author

Thomas Fromherz

Bio: Thomas Fromherz is an academic researcher from Johannes Kepler University of Linz. The author has contributed to research in topics: Quantum dot & Quantum well. The author has an hindex of 30, co-authored 160 publications receiving 8443 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the power conversion efficiency of organic photovoltaic devices based on a conjugated polymer/methanofullerene blend is dramatically affected by molecular morphology.
Abstract: We show that the power conversion efficiency of organic photovoltaic devices based on a conjugated polymer/methanofullerene blend is dramatically affected by molecular morphology. By structuring the blend to be a more intimate mixture that contains less phase segregation of methanofullerenes, and simultaneously increasing the degree of interactions between conjugated polymer chains, we have fabricated a device with a power conversion efficiency of 2.5% under AM1.5 illumination. This is a nearly threefold enhancement over previously reported values for such a device, and it approaches what is needed for the practical use of these devices for harvesting energy from sunlight.

2,591 citations

Journal ArticleDOI
TL;DR: A series of highly soluble fullerene derivatives with varying acceptor strengths (i.e., first reduction potentials) was synthesized and used as electron acceptors in plastic solar cells as discussed by the authors.
Abstract: A series of highly soluble fullerene derivatives with varying acceptor strengths (i.e., first reduction potentials) was synthesized and used as electron acceptors in plastic solar cells. These fullerene derivatives, methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM), a new azafulleroid, and a ketolactam quasifullerene, show a variation of almost 200 mV in their first reduction potential. The open circuit voltage of the corresponding devices was found to correlate directly with the acceptor strength of the fullerenes, whereas it was rather insensitive to variations of the work function of the negative electrode. These observations are discussed within the concept of Fermi level pinning between fullerenes and metals via surface charges.

1,807 citations

Journal ArticleDOI
TL;DR: In this article, a CMOS-compatible photodetector based on graphene with multi-gigahertz operation ranging from the O-to U-band of telecommunication bands is demonstrated, highlighting the promise of graphene as a new material for integrated photonics.
Abstract: A CMOS-compatible photodetector based on graphene with multi-gigahertz operation ranging from the O- to U-band of telecommunication bands is demonstrated, highlighting the promise of graphene as a new material for integrated photonics.

675 citations

Journal ArticleDOI
TL;DR: In this paper, the temperature dependence of various photovoltaic device parameters of solar cells, fabricated from interpenetrating networks of conjugated polymers with fullerenes, in the wide temperature range of their possible operating conditions was reported.
Abstract: We report on the temperature dependence of various photovoltaic device parameters of solar cells, fabricated from interpenetrating networks of conjugated polymers with fullerenes, in the wide temperature range of their possible operating conditions ~25‐ 60 °C!. The open-circuit voltage was found to decrease linearly with increasing temperature. For the short-circuit current, we observed a monotonic increase with increasing temperature, followed by a saturation region. The rate of this increase ~coupled to a corresponding increase for the fill factor! was found to overtake the corresponding rate of decrease in voltage, resulting in an overall increase of the energy conversion efficiency. The efficiency was observed to reach a maximum value in the approximate range 47‐ 60 °C. The results are discussed with respect to possible mechanisms for photovoltage generation and charge carrier transport in the conjugated polymer-fullerene composite, and in particular, thermally activated charge carrier mobility. © 2001 American Institute of Physics. @DOI: 10.1063/1.1412270#

199 citations

Journal ArticleDOI
TL;DR: In this article, the optical properties of poly(3-hexylthiophene): 1-(3-methoxy-carbonyl) propyl-1-phenyl[6,6]C61 based solar cells with two different thicknesses of the active layer (170 and 880nm) were investigated, and it was shown that in the thin ones the absorption is enhanced for oblique incident radiation.
Abstract: The realization of highly efficient organic solar cells requires the understanding and the optimization of the light path in the photoactive layer. We present in this article our approach to measure and model the optical properties of our bulk-heterojunction devices, and to control them in order to enhance the photovoltaic performances. We report our recent observations on the dependence of the external quantum efficiency (EQE) on the incidence angle of the light, and our results on the determination of internal quantum efficiency based on EQE measurement and optical modeling cross-checked by reflection measurements. We investigate poly(3-hexylthiophene): 1-(3-methoxy-carbonyl) propyl-1-phenyl[6,6]C61 based solar cells with two different thicknesses of the active layer (170 and 880nm), and show that in the thin ones the absorption is enhanced for oblique incident radiation.

170 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
TL;DR: This review gives a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells, and discusses the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells.
Abstract: The need to develop inexpensive renewable energy sources stimulates scientific research for efficient, low-cost photovoltaic devices.1 The organic, polymer-based photovoltaic elements have introduced at least the potential of obtaining cheap and easy methods to produce energy from light.2 The possibility of chemically manipulating the material properties of polymers (plastics) combined with a variety of easy and cheap processing techniques has made polymer-based materials present in almost every aspect of modern society.3 Organic semiconductors have several advantages: (a) lowcost synthesis, and (b) easy manufacture of thin film devices by vacuum evaporation/sublimation or solution cast or printing technologies. Furthermore, organic semiconductor thin films may show high absorption coefficients4 exceeding 105 cm-1, which makes them good chromophores for optoelectronic applications. The electronic band gap of organic semiconductors can be engineered by chemical synthesis for simple color changing of light emitting diodes (LEDs).5 Charge carrier mobilities as high as 10 cm2/V‚s6 made them competitive with amorphous silicon.7 This review is organized as follows. In the first part, we will give a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells. In the second part, we will focus on conjugated polymer/fullerene bulk heterojunction solar cells, mainly on polyphenylenevinylene (PPV) derivatives/(1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) fullerene derivatives and poly(3-hexylthiophene) (P3HT)/PCBM systems. In the third part, we will discuss the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells. In the fourth part, we will suggest possible routes for further improvements and finish with some conclusions. The different papers mentioned in the text have been chosen for didactical purposes and cannot reflect the chronology of the research field nor have a claim of completeness. The further interested reader is referred to the vast amount of quality papers published in this field during the past decade.

6,059 citations

Journal ArticleDOI
TL;DR: In this article, the authors report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene.
Abstract: Converting solar energy into electricity provides a much-needed solution to the energy crisis the world is facing today. Polymer solar cells have shown potential to harness solar energy in a cost-effective way. Significant efforts are underway to improve their efficiency to the level of practical applications. Here, we report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene. Controlling the active layer growth rate results in an increased hole mobility and balanced charge transport. Together with increased absorption in the active layer, this results in much-improved device performance, particularly in external quantum efficiency. The power-conversion efficiency of 4.4% achieved here is the highest published so far for polymer-based solar cells. The solution process involved ensures that the fabrication cost remains low and the processing is simple. The high efficiency achieved in this work brings these devices one step closer to commercialization.

5,431 citations

Journal ArticleDOI
29 Apr 2004-Nature
TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Abstract: Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

4,967 citations

Journal ArticleDOI
29 Mar 2002-Science
TL;DR: It is demonstrated that semiconductor nanorods can be used to fabricate readily processed and efficient hybrid solar cells together with polymers and Tuning the band gap by altering the nanorod radius enabled us to optimize the overlap between the absorption spectrum of the cell and the solar emission spectrum.
Abstract: We demonstrate that semiconductor nanorods can be used to fabricate readily processed and efficient hybrid solar cells together with polymers. By controlling nanorod length, we can change the distance on which electrons are transported directly through the thin film device. Tuning the band gap by altering the nanorod radius enabled us to optimize the overlap between the absorption spectrum of the cell and the solar emission spectrum. A photovoltaic device consisting of 7-nanometer by 60-nanometer CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of 6.9% under 0.1 milliwatt per square centimeter illumination at 515 nanometers. Under Air Mass (A.M.) 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.

4,898 citations