scispace - formally typeset
Search or ask a question
Author

Thomas G. Dietterich

Bio: Thomas G. Dietterich is an academic researcher from Oregon State University. The author has contributed to research in topics: Reinforcement learning & Markov decision process. The author has an hindex of 74, co-authored 279 publications receiving 51935 citations. Previous affiliations of Thomas G. Dietterich include University of Wyoming & Stanford University.


Papers
More filters
Posted Content
TL;DR: A methodology for transforming existing classification data sets into ground-truthed benchmark data sets for anomaly detection, which produces data sets that vary along three important dimensions: point difficulty, relative frequency of anomalies, and clusteredness.
Abstract: Research in anomaly detection suffers from a lack of realistic and publicly-available data sets. Because of this, most published experiments in anomaly detection validate their algorithms with application-specific case studies or benchmark datasets of the researchers' construction. This makes it difficult to compare different methods or to measure progress in the field. It also limits our ability to understand the factors that determine the performance of anomaly detection algorithms. This article proposes a new methodology for empirical analysis and evaluation of anomaly detection algorithms. It is based on generating thousands of benchmark datasets by transforming existing supervised learning benchmark datasets and manipulating properties relevant to anomaly detection. The paper identifies and validates four important dimensions: (a) point difficulty, (b) relative frequency of anomalies, (c) clusteredness of anomalies, and (d) relevance of features. We apply our generated datasets to analyze several leading anomaly detection algorithms. The evaluation verifies the importance of these dimensions and shows that, while some algorithms are clearly superior to others, anomaly detection accuracy is determined more by variation in the four dimensions than by the choice of algorithm.

34 citations

Proceedings Article
27 Jul 2014
TL;DR: This paper studies state aggregation as a way of reducing stochastic branching in tree search, and finds that trajectory sampling algorithms like UCT can be adapted easily, but that sparse sampling algorithms present difficulties.
Abstract: Monte Carlo tree search (MCTS) algorithms are a popular approach to online decision-making in Markov decision processes (MDPs). These algorithms can, however, perform poorly in MDPs with high stochastic branching factors. In this paper, we study state aggregation as a way of reducing stochastic branching in tree search. Prior work has studied formal properties of MDP state aggregation in the context of dynamic programming and reinforcement learning, but little attention has been paid to state aggregation in MCTS. Our main result is a performance loss bound for a class of value function-based state aggregation criteria in expectimax search trees. We also consider how to construct MCTS algorithms that operate in the abstract state space but require a simulator of the ground dynamics only. We find that trajectory sampling algorithms like UCT can be adapted easily, but that sparse sampling algorithms present difficulties. As a proof of concept, we experimentally confirm that state aggregation can improve the finite-sample performance of UCT.

34 citations

Journal ArticleDOI
TL;DR: A data representation is used to record the history of the design as a sequence of design decisions and the resulting data base records the final specifications, the alternatives which were considered during the design process, and the designers' rationale for choosing the final design parameters.
Abstract: Collaborative design projects place additional burdens on design documentation practices. The literature on group design has repeatedly documented the existence of problems in design decision-making due to the unavailability of design information. This paper describes a data representation developed for collaborative mechanical design information. The data representation is used to record the history of the design as a sequence of design decisions. The resulting data base records the final specifications, the alternatives which were considered during the design process, and the designers' rationale for choosing the final design parameters. It is currently implemented in a computerized data base system under development at Oregon State University (OSU).

31 citations

Posted Content
TL;DR: In this paper, an open category detection algorithm with PAC-style guarantees on the alien detection rate is proposed, which aims to minimize false alarms under the assumption that an upper bound on the probability of alien detection is known.
Abstract: Open category detection is the problem of detecting "alien" test instances that belong to categories or classes that were not present in the training data. In many applications, reliably detecting such aliens is central to ensuring the safety and accuracy of test set predictions. Unfortunately, there are no algorithms that provide theoretical guarantees on their ability to detect aliens under general assumptions. Further, while there are algorithms for open category detection, there are few empirical results that directly report alien detection rates. Thus, there are significant theoretical and empirical gaps in our understanding of open category detection. In this paper, we take a step toward addressing this gap by studying a simple, but practically-relevant variant of open category detection. In our setting, we are provided with a "clean" training set that contains only the target categories of interest and an unlabeled "contaminated" training set that contains a fraction $\alpha$ of alien examples. Under the assumption that we know an upper bound on $\alpha$, we develop an algorithm with PAC-style guarantees on the alien detection rate, while aiming to minimize false alarms. Empirical results on synthetic and standard benchmark datasets demonstrate the regimes in which the algorithm can be effective and provide a baseline for further advancements.

30 citations

Proceedings Article
19 Jul 2007
TL;DR: A Dynamic Bayesian Network model is introduced for analyzing sensor observations and distinguishing sensor failures from valid data for the case of air temperature measured at 15 minute time resolution that combines an accurate distribution of long-term and short-term temperature variations with a single generalized fault model.
Abstract: Remote sensors are becoming the standard for observing and recording ecological data in the field. Such sensors can record data at fine temporal resolutions, and they can operate under extreme conditions prohibitive to human access. Unfortunately, sensor data streams exhibit many kinds of errors ranging from corrupt communications to partial or total sensor failures. This means that the raw data stream must be cleaned before it can be used by domain scientists. In our application environment—the H.J. Andrews Experimental Forest—this data cleaning is performed manually. This paper introduces a Dynamic Bayesian Network model for analyzing sensor observations and distinguishing sensor failures from valid data for the case of air temperature measured at 15 minute time resolution. The model combines an accurate distribution of long-term and short-term temperature variations with a single generalized fault model. Experiments with historical data show that the precision and recall of the method is comparable to that of the domain expert. The system is currently being deployed to perform real-time automated data cleaning.

30 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations