scispace - formally typeset
Search or ask a question
Author

Thomas G. Dietterich

Bio: Thomas G. Dietterich is an academic researcher from Oregon State University. The author has contributed to research in topics: Reinforcement learning & Markov decision process. The author has an hindex of 74, co-authored 279 publications receiving 51935 citations. Previous affiliations of Thomas G. Dietterich include University of Wyoming & Stanford University.


Papers
More filters
Posted Content
TL;DR: In this paper, a Dynamic Bayesian Network (DBN) model is proposed for analyzing sensor observations and distinguishing sensor failures from valid data for the case of air temperature measured at 15 minute time resolution.
Abstract: Remote sensors are becoming the standard for observing and recording ecological data in the field. Such sensors can record data at fine temporal resolutions, and they can operate under extreme conditions prohibitive to human access. Unfortunately, sensor data streams exhibit many kinds of errors ranging from corrupt communications to partial or total sensor failures. This means that the raw data stream must be cleaned before it can be used by domain scientists. In our application environment|the H.J. Andrews Experimental Forest|this data cleaning is performed manually. This paper introduces a Dynamic Bayesian Network model for analyzing sensor observations and distinguishing sensor failures from valid data for the case of air temperature measured at 15 minute time resolution. The model combines an accurate distribution of long-term and short-term temperature variations with a single generalized fault model. Experiments with historical data show that the precision and recall of the method is comparable to that of the domain expert. The system is currently being deployed to perform real-time automated data cleaning.

30 citations

Proceedings Article
27 Jul 2014
TL;DR: This paper proposes the first formal framework for scripts based on Hidden Markov Models (HMMs) and develops an algorithm for structure and parameter learning based on Expectation Maximization, which is superior to several informed baselines for predicting missing events in partial observation sequences.
Abstract: Scripts have been proposed to model the stereotypical event sequences found in narratives. They can be applied to make a variety of inferences including filling gaps in the narratives and resolving ambiguous references. This paper proposes the first formal framework for scripts based on Hidden Markov Models (HMMs). Our framework supports robust inference and learning algorithms, which are lacking in previous clustering models. We develop an algorithm for structure and parameter learning based on Expectation Maximization and evaluate it on a number of natural datasets. The results show that our algorithm is superior to several informed baselines for predicting missing events in partial observation sequences.

29 citations

Proceedings Article
18 Aug 1980
TL;DR: The resulting Eleusis program does show that by using knowledge-based data interpretation and rule evaluation techniques and model-fitting induction techniques, general induction methods can be used to solve complex problems.
Abstract: Research was undertaken with the goal of applying general universally-applicable induction methods to complex real-world problems. The goal was only partially met. The chosen domain—the card game Eleusis—was still somewhat artificial, and the universally-applicable induction methods were found to be lacking in important ways. However, the resulting Eleusis program does show that by using knowledge-based data interpretation and rule evaluation techniques and model-fitting induction techniques, general induction methods can be used to solve complex problems.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore strategies for estimating parameters based on maximizing a penalized likelihood, which augments the usual likelihood with a penalty function that encodes information about what parameter values are undesirable.
Abstract: Summary Occupancy models are employed in species distribution modelling to account for imperfect detection during field surveys. While this approach is popular in the literature, problems can occur when estimating the model parameters. In particular, the maximum likelihood estimates can exhibit bias and large variance for data sets with small sample sizes, which can result in estimated occupancy probabilities near 0 and 1 (‘boundary estimates’). In this paper, we explore strategies for estimating parameters based on maximizing a penalized likelihood. Penalized likelihood methods augment the usual likelihood with a penalty function that encodes information about what parameter values are undesirable. We introduce penalties for occupancy models that have analogues in ridge regression and Bayesian approaches, and we compare them to a penalty developed for occupancy models in prior work. We examine the bias, variance and mean squared error of parameter estimates obtained from each method on synthetic data. Across all of the synthetic data sets, the penalized estimation methods had lower mean squared error than the maximum likelihood estimates. We also provide an example of the application of these methods to point counts of avian species. Penalized likelihood methods show similar improvements when tested using empirical bird point count data. We discuss considerations for choosing among these methods when modelling occupancy. We conclude that penalized methods may be of practical utility for fitting occupancy models with small sample sizes, and we are releasing R code that implements these methods.

28 citations

Journal Article
TL;DR: A new algorithm for training CRFs via gradient tree boosting, which scales linearly in the order of the Markov model and in theorder of the feature interactions, rather than exponentially as in previous algorithms based on iterative scaling and gradient descent.
Abstract: Conditional random fields (CRFs) provide a flexible and powerful model for sequence labeling problems. However, existing learning algorithms are slow, particularly in problems with large numbers of potential input features and feature combinations. This paper describes a new algorithm for training CRFs via gradient tree boosting. In tree boosting, the CRF potential functions are represented as weighted sums of regression trees, which provide compact representations of feature interactions. So the algorithm does not explicitly consider the potentially large parameter space. As a result, gradient tree boosting scales linearly in the order of the Markov model and in the order of the feature interactions, rather than exponentially as in previous algorithms based on iterative scaling and gradient descent. Gradient tree boosting also makes it possible to use instance weighting (as in C4.5) and surrogate splitting (as in CART) to handle missing values. Experimental studies of the effectiveness of these two methods (as well as standard imputation and indicator feature methods) show that instance weighting is the best method in most cases when feature values are missing at random.

28 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations