scispace - formally typeset
Search or ask a question
Author

Thomas G. Dietterich

Bio: Thomas G. Dietterich is an academic researcher from Oregon State University. The author has contributed to research in topics: Reinforcement learning & Markov decision process. The author has an hindex of 74, co-authored 279 publications receiving 51935 citations. Previous affiliations of Thomas G. Dietterich include University of Wyoming & Stanford University.


Papers
More filters
Posted Content
TL;DR: The MAXQ-Q algorithm as mentioned in this paper decomposes the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposes value function of the target MDP into an additive combination of the value functions of the smaller mDPs, and proves that it converges wih probability 1 to a kind of locally-optimal policy known as a recursively optimal policy.
Abstract: This paper presents the MAXQ approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs. The paper defines the MAXQ hierarchy, proves formal results on its representational power, and establishes five conditions for the safe use of state abstractions. The paper presents an online model-free learning algorithm, MAXQ-Q, and proves that it converges wih probability 1 to a kind of locally-optimal policy known as a recursively optimal policy, even in the presence of the five kinds of state abstraction. The paper evaluates the MAXQ representation and MAXQ-Q through a series of experiments in three domains and shows experimentally that MAXQ-Q (with state abstractions) converges to a recursively optimal policy much faster than flat Q learning. The fact that MAXQ learns a representation of the value function has an important benefit: it makes it possible to compute and execute an improved, non-hierarchical policy via a procedure similar to the policy improvement step of policy iteration. The paper demonstrates the effectiveness of this non-hierarchical execution experimentally. Finally, the paper concludes with a comparison to related work and a discussion of the design tradeoffs in hierarchical reinforcement learning.

20 citations

Book ChapterDOI
11 Dec 2000
TL;DR: The problem of divide-and-conquer learning is defined and the key research questions that need to be studied are identified in order to develop practical, general-purpose learning algorithms for divide- and- Conquer problems and an associated theory.
Abstract: Existing machine learning theory and algorithms have focused on learning an unknown function from training examples, where the unknown function maps from a feature vector to one of a small number of classes. Emerging applications in science and industry require learning much more complex functions that map from complex input spaces (e.g., 2-dimensional maps, time series, and strings) to complex output spaces (e.g., other 2-dimensional maps, time series, and strings). Despite the lack of theory covering such cases, many practical systems have been built that work well in particular applications. These systems all employ some form of divide-and-conquer, where the inputs and outputs are divided into smaller pieces (e.g., "windows"), classified, and then the results are merged to produce an overall solution. This paper defines the problem of divide-and-conquer learning and identifies the key research questions that need to be studied in order to develop practical, general-purpose learning algorithms for divide-and-conquer problems and an associated theory.

20 citations

Book ChapterDOI
01 Jan 1984
TL;DR: This article analyzes the three tasks of the Critic as threefold: evaluation of the past actions of the performance element of the learning system, localization of credit and blame to particular portions of that performance element, and recommendation of possible improvements and modifications in the performanceelement.
Abstract: Buchanan, Mitchell, Smith, and Johnson (1978) described a general model of learning systems that included a component called the Critic. The task of the Critic was described as threefold: evaluation of the past actions of the performance element of the learning system, localization of credit and blame to particular portions of that performance element, and recommendation of possible improvements and modifications in the performance element. This article analyzes these three tasks in detail and surveys the methods that have been employed in existing learning systems to accomplish them. The principle method used to evaluate the performance element is to develop a global performance standard by (a) consulting an external source of knowledge, (b) consulting an internal source of knowledge, or (c) conducting deep search. Credit and blame have been localized by (a) asking an external knowledge source to do the localization, (b) factoring the global performance standard to produce a local performance standard, and (c) conducting controlled experiments on the performance element. Recommendations have been conmiunicated to the learning element using (a) local training instances, (b) correlation coefficients, and (c) partially-instantiated schemata.

19 citations

01 Jan 1999
TL;DR: This work studies methods for modifying C4.5 to incorporate arbitrary loss matrices and tests several methods: a wrapper method and some simple heuristics, and shows that this measure can predict when more e cient methods will be applied and when the wrapper method must be applied.
Abstract: Many machine learning applications require classi ers that minimize an asymmetric loss function rather than the raw misclassi cation rate. We study methods for modifying C4.5 to incorporate arbitrary loss matrices. One way to incorporate loss information into C4.5 is to manipulate the weights assigned to the examples from di erent classes. For 2-class problems, this works for any loss matrix, but for k > 2 classes, it is not su cient. Nonetheless, we ask what is the set of class weights that best approximates an arbitrary k k loss matrix, and we test and compare several methods: a wrapper method and some simple heuristics. The best method is a wrapper method that directly optimizes the loss using a holdout data set. We de ne complexity measure for loss matrices and show that this measure can predict when more e cient methods will su ce and when the wrapper method must be applied.

19 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 2001
TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract: Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

79,257 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations