scispace - formally typeset
Search or ask a question
Author

Thomas H. Hampton

Bio: Thomas H. Hampton is an academic researcher from Dartmouth College. The author has contributed to research in topics: Cystic fibrosis & Pseudomonas aeruginosa. The author has an hindex of 28, co-authored 68 publications receiving 2878 citations. Previous affiliations of Thomas H. Hampton include Dartmouth–Hitchcock Medical Center & Microsoft.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings are consistent with the hypothesis that sRNA52320 in OMVs is a novel mechanism of host-pathogen interaction whereby P. aeruginosa reduces the host immune response.
Abstract: Bacterial outer membrane vesicle (OMV)-mediated delivery of proteins to host cells is an important mechanism of host-pathogen communication. Emerging evidence suggests that OMVs contain differentially packaged short RNAs (sRNAs) with the potential to target host mRNA function and/or stability. In this study, we used RNA-Seq to characterize differentially packaged sRNAs in Pseudomonas aeruginosa OMVs, and to show transfer of OMV sRNAs to human airway cells. We selected one sRNA for further study based on its stable secondary structure and predicted mRNA targets. Our candidate sRNA (sRNA52320), a fragment of a P. aeruginosa methionine tRNA, was abundant in OMVs and reduced LPS-induced as well as OMV-induced IL-8 secretion by cultured primary human airway epithelial cells. We also showed that sRNA52320 attenuated OMV-induced KC cytokine secretion and neutrophil infiltration in mouse lung. Collectively, these findings are consistent with the hypothesis that sRNA52320 in OMVs is a novel mechanism of host-pathogen interaction whereby P. aeruginosa reduces the host immune response.

293 citations

Journal ArticleDOI
31 Aug 2012-Mbio
TL;DR: It is suggested that nutritional factors and gut colonization patterns are determinants of the microbial development of respiratory tract microbiota in infants with CF and present opportunities for early intervention in CF with altered dietary or probiotic strategies.
Abstract: Pulmonary damage caused by chronic colonization of the cystic fibrosis (CF) lung by microbial communities is the proximal cause of respiratory failure. While there has been an effort to document the microbiome of the CF lung in pediatric and adult patients, little is known regarding the developing microflora in infants. We examined the respiratory and intestinal microbiota development in infants with CF from birth to 21 months. Distinct genera dominated in the gut compared to those in the respiratory tract, yet some bacteria overlapped, demonstrating a core microbiota dominated by Veillonella and Streptococcus. Bacterial diversity increased significantly over time, with evidence of more rapidly acquired diversity in the respiratory tract. There was a high degree of concordance between the bacteria that were increasing or decreasing over time in both compartments; in particular, a significant proportion (14/16 genera) increasing in the gut were also increasing in the respiratory tract. For 7 genera, gut colonization presages their appearance in the respiratory tract. Clustering analysis of respiratory samples indicated profiles of bacteria associated with breast-feeding, and for gut samples, introduction of solid foods even after adjustment for the time at which the sample was collected. Furthermore, changes in diet also result in altered respiratory microflora, suggesting a link between nutrition and development of microbial communities in the respiratory tract. Our findings suggest that nutritional factors and gut colonization patterns are determinants of the microbial development of respiratory tract microbiota in infants with CF and present opportunities for early intervention in CF with altered dietary or probiotic strategies. IMPORTANCE While efforts have been focused on assessing the microbiome of pediatric and adult cystic fibrosis (CF) patients to understand how chronic colonization by these microbes contributes to pulmonary damage, little is known regarding the earliest development of respiratory and gut microflora in infants with CF. Our findings suggest that colonization of the respiratory tract by microbes is presaged by colonization of the gut and demonstrated a role of nutrition in development of the respiratory microflora. Thus, targeted dietary or probiotic strategies may be an effective means to change the course of the colonization of the CF lung and thereby improve patient outcomes.

288 citations

Journal ArticleDOI
TL;DR: It is shown that outpatient sputum samples have significantly higher bacterial diversity than inpatients, but maintenance treatment with tobramycin did not impact overall diversity.
Abstract: Diverse microbial communities chronically colonize the lungs of cystic fibrosis patients. Pyrosequencing of amplicons for hypervariable regions in the 16S rRNA gene generated taxonomic profiles of bacterial communities for sputum genomic DNA samples from 22 patients during a state of clinical stability (outpatients) and 13 patients during acute exacerbation (inpatients). We employed quantitative PCR (qPCR) to confirm the detection of Pseudomonas aeruginosa and Streptococcus by the pyrosequencing data and human oral microbe identification microarray (HOMIM) analysis to determine the species of the streptococci identified by pyrosequencing. We show that outpatient sputum samples have significantly higher bacterial diversity than inpatients, but maintenance treatment with tobramycin did not impact overall diversity. Contrary to the current dogma in the field that Pseudomonas aeruginosa is the dominant organism in the majority of cystic fibrosis patients, Pseudomonas constituted the predominant genera in only half the patient samples analyzed and reported here. The increased fractional representation of Streptococcus in the outpatient cohort relative to the inpatient cohort was the strongest predictor of clinically stable lung disease. The most prevalent streptococci included species typically associated with the oral cavity (Streptococcus salivarius and Streptococcus parasanguis) and the Streptococcus milleri group species. These species of Streptococcus may play an important role in increasing the diversity of the cystic fibrosis lung environment and promoting patient stability.

173 citations

Journal ArticleDOI
TL;DR: In patients with GBM, immune therapy with DC vaccination after radiation and TMZ resulted in tumor-specific immune responses that were associated with prolonged survival, and data suggest that DC vaccination in combination with radiation and chemotherapy in patients in the top quintile for at least one immune function parameter had improved survival.
Abstract: Patients with glioblastoma multiforme (GBM) are profoundly immunosuppressed and may benefit from restoration of an antitumor immune response in combination with conventional radiation therapy and temozolomide (TMZ). The optimal strategies to evaluate clinically relevant immune responses to treatment have yet to be determined. The primary objective of our study was to determine immunologic response to cervical intranodal vaccination with autologous tumor lysate-loaded dendritic cells (DCs) in patients with GBM after radiation therapy and TMZ. We used a novel hierarchical clustering analysis of immune parameters measured before and after vaccination. Secondary objectives were to assess treatment feasibility and to correlate immune response with progression-free survival (PFS) and overall survival. Ten eligible patients received vaccination. Tumor-specific cytotoxic T-cell response measured after vaccination was enhanced for the precursor frequency of CD4+ T and CD4+ interferon γ-producing cells. Hierarchical clustering analysis of multiple functional outcomes discerned 2 groups of patients according to their immune response, and additionally showed that patients in the top quintile for at least one immune function parameter had improved survival. There were no serious adverse events related to DC vaccination. All patients were alive at 6 months after diagnosis and the 6-month PFS was 90%. The median PFS was 9.5 months and overall survival was 28 months. In patients with GBM, immune therapy with DC vaccination after radiation and TMZ resulted in tumor-specific immune responses that were associated with prolonged survival. Our data suggest that DC vaccination in combination with radiation and chemotherapy in patients with GBM is feasible, safe, and may induce tumor-specific immune responses.

154 citations

Journal Article
TL;DR: The lung and kidney may be more sensitive than liver to chromium-induced DNA damage, an observation which correlates with the reported toxicity and carcinogenicity data for chromium(VI) in both animals and humans.
Abstract: DNA lesions were detected in rat organ nuclei following an i.p. injection of sodium dichromate. Kidney, liver, and lung nuclei were examined for DNA interstrand cross-links, strand breaks, and DNA-protein cross-links using the alkaline elution technique. The time course for formation of cross-links in kidney nuclei revealed the presence of DNA interstrand and DNA-protein cross-links 1 hr after injection of sodium dichromate. By 40 hr in kidney, DNA interstrand cross-links had been repaired, but DNA-protein cross-links persisted. In liver nuclei, the time course for formation of cross-links after injection of dichromate showed a maximum in DNA-protein cross-linking at 4 hr and a maximum in DNA interstrand cross-linking at 2 hr. By 36 hr, in the liver, both types of lesions had been repaired. In lung nuclei, both DNA interstrand and DNA-protein cross-links were observed 1 hr after dichromate injection; however, by 36 hr, only DNA-protein cross-links persisted. No DNA lesions were detectable in kidney 1 hr after an i.p. injection of chromium(III) chloride. Chromium distribution in rat kidney, liver, and lung was measured and is discussed with respect to the observed DNA lesions. The lung and kidney may be more sensitive than liver to chromiuminduced DNA damage, an observation which correlates with the reported toxicity and carcinogenicity data for chromlum(VI) in both animals and humans.

152 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal Article
TL;DR: A case study explores the background of the digitization project, the practices implemented, and the critiques of the project, which aims to provide access to a plethora of information to EPA employees, scientists, and researchers.
Abstract: The Environmental Protection Agency (EPA) provides access to information on a variety of topics related to the environment and strives to inform citizens of health risks. The EPA also has an extensive library network that consists of 26 libraries throughout the United States, which provide access to a plethora of information to EPA employees, scientists, and researchers. The EPA implemented a reorganization project to digitize their materials so they would be more accessible to a wider range of users, but this plan was drastically accelerated when the EPA was threatened with a budget cut. It chose to close and reduce the hours and services of some of their libraries. As a result, the agency was accused of denying users the “right to know” by making information unavailable, not providing an adequate strategic plan, and discarding vital materials. This case study explores the background of the digitization project, the practices implemented, and the critiques of the project.

2,588 citations

Journal ArticleDOI
TL;DR: The results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.
Abstract: Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

1,982 citations

Journal ArticleDOI
John K. Colbourne1, Michael E. Pfrender2, Michael E. Pfrender3, Donald L. Gilbert1, W. Kelley Thomas4, Abraham E. Tucker1, Abraham E. Tucker4, Todd H. Oakley5, Shin-ichi Tokishita6, Andrea Aerts7, Georg J. Arnold8, Malay Kumar Basu9, Malay Kumar Basu10, Darren J Bauer4, Carla E. Cáceres11, Liran Carmel10, Liran Carmel12, Claudio Casola1, Jeong Hyeon Choi1, John C. Detter7, Qunfeng Dong13, Qunfeng Dong1, Serge Dusheyko7, Brian D. Eads1, Thomas Fröhlich8, Kerry Geiler-Samerotte14, Kerry Geiler-Samerotte5, Daniel Gerlach15, Daniel Gerlach16, Phil Hatcher4, Sanjuro Jogdeo17, Sanjuro Jogdeo4, Jeroen Krijgsveld18, Evgenia V. Kriventseva15, Dietmar Kültz19, Christian Laforsch8, Erika Lindquist7, Jacqueline Lopez1, J. Robert Manak20, J. Robert Manak21, Jean Muller22, Jasmyn Pangilinan7, Rupali P Patwardhan23, Rupali P Patwardhan1, Samuel Pitluck7, Ellen J. Pritham24, Andreas Rechtsteiner1, Andreas Rechtsteiner25, Mina Rho1, Igor B. Rogozin10, Onur Sakarya5, Onur Sakarya26, Asaf Salamov7, Sarah Schaack1, Sarah Schaack24, Harris Shapiro7, Yasuhiro Shiga6, Courtney Skalitzky20, Zachary Smith1, Alexander Souvorov10, Way Sung4, Zuojian Tang1, Zuojian Tang27, Dai Tsuchiya1, Hank Tu7, Hank Tu26, Harmjan R. Vos18, Mei Wang7, Yuri I. Wolf10, Hideo Yamagata6, Takuji Yamada, Yuzhen Ye1, Joseph R. Shaw1, Justen Andrews1, Teresa J. Crease28, Haixu Tang1, Susan Lucas7, Hugh M. Robertson11, Peer Bork, Eugene V. Koonin10, Evgeny M. Zdobnov29, Evgeny M. Zdobnov15, Igor V. Grigoriev7, Michael Lynch1, Jeffrey L. Boore30, Jeffrey L. Boore7 
04 Feb 2011-Science
TL;DR: The Daphnia genome reveals a multitude of genes and shows adaptation through gene family expansions, and the coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random.
Abstract: We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.

1,204 citations