scispace - formally typeset
Search or ask a question
Author

Thomas H. Kuehn

Other affiliations: Iowa State University
Bio: Thomas H. Kuehn is an academic researcher from University of Minnesota. The author has contributed to research in topics: Heat transfer & Natural convection. The author has an hindex of 32, co-authored 120 publications receiving 3896 citations. Previous affiliations of Thomas H. Kuehn include Iowa State University.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, an experimental and theoretical-numerical investigation has been carried out to extend existing knowledge of velocity and temperature distributions and local heat-transfer coefficients for naturel convection within a horizontal annulus.
Abstract: An experimental and theoretical-numerical investigation has been carried out to extend existing knowledge of velocity and temperature distributions and local heat-transfer coefficients for naturel convection within a horizontal annulus. A Mach—Zehnder interferometer was used to determine temperature distributions and local heat-transfer coefficients experimentally. Results were obtained using water and air at atmospheric pressure with a ratio of gap width to inner-cylinder diameter of 0·8. The Rayleigh number based on the gap width varied from 2·11 × 104to 9·76 × 105. A finite-difference method was used to solve the governing constant-property equations numerically. The Rayleigh number was changed from 102 to 105 with the influence of Prandtl number and diameter ratio obtained near a Rayleigh number of 104. Comparisons between the present experimental and numerical results under similar conditions show good agreement.

664 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the Navier-Stokes and energy equations were solved using an elliptic numerical procedure for a horizontal isothermal cylinder, and the flow approach natural convection from a line heat source as Ra → 0 and laminar boundary-layer flow as Ra→ ∞.
Abstract: Laminar natural-convection heat transfer from a horizontal isothermal cylinder is studied by solving the Navier-Stokes and energy equations using an elliptic numerical procedure. Results are obtained for 100 ≤ Ra ≤ 107. The flow approaches natural convection from a line heat source as Ra → 0 and laminar boundary-layer flow as Ra → ∞. Boundary-layer solutions do not adequately describe the flow and heat transfer at low or moderate values of Ra because of the neglect of curvature effects and the breakdown of the boundary-layer assumptions in the region of the plume. Good agreement with experimental results is achieved.

306 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a conduction boundary-layer model is used for heat transfer by conduction, laminar flow and turbulent flow. Butler et al. obtained a correlation for convection from a free horizontal cylinder as the outer cylinder diameter becomes infinite and for quasi-steady heat transfer to fluid within a horizontal cylinder.
Abstract: Correlating equations for heat transfer by natural convection from horizontal cylinders to a cylindrical enclosure are obtained using a conduction boundary-layer model. The correlation is valid for heat transfer by conduction, laminar flow and turbulent flow. The results approach the correlation for heat transfer from a free horizontal cylinder as the outer cylinder diameter becomes infinite and for quasi-steady heat transfer to fluid within a horizontal cylinder as the inner cylinder diameter approaches zero. Horizontal concentric, eccentric and arrays of cylinders within the outer cylinder are geometries included in the correlation.

239 citations

Journal ArticleDOI

[...]

TL;DR: This survey, although extensive cannot include every paper; some selection is necessary, is intended to encompass the English language heat transfer papers published in 2003, including some translations of foreign language papers.
Abstract: The present paper is intended to encompass the English language heat transfer papers published in 2003, including some translations of foreign language papers. This survey, although extensive cannot include every paper; some selection is necessary. Many papers reviewed herein relate to the science of heat transfer, including numerical, analytical and experimental works. Others relate to applications where heat transfer plays a major role not only in man-made devices, but in natural systems as well. The papers are grouped into categories and then into sub-fields within these categories. We restrict ourselves to papers published in reviewed archival journals. Besides reviewing the journal articles in the body of this paper, we also mention important conferences and meetings on heat transfer and related fields, major awards presented in 2003, and books on heat transfer published during the year.

98 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, a review of the history of thermal energy storage with solid-liquid phase change has been carried out and three aspects have been the focus of this review: materials, heat transfer and applications.
Abstract: Thermal energy storage in general, and phase change materials (PCMs) in particular, have been a main topic in research for the last 20 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. In this work, a review has been carried out of the history of thermal energy storage with solid–liquid phase change. Three aspects have been the focus of this review: materials, heat transfer and applications. The paper contains listed over 150 materials used in research as PCMs, and about 45 commercially available PCMs. The paper lists over 230 references.

3,637 citations

[...]

01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

2,498 citations

[...]

01 Jan 2011
TL;DR: This report reviews previous guidelines and strategies for preventing environment-associated infections in health-care facilities and offers recommendations, including evidence-based recommendations supported by studies and experienced opinions based upon infection-control and engineering practices.
Abstract: The health-care facility environment is rarely implicated in disease transmission, except among patients who are immunocompromised. Nonetheless, inadvertent exposures to environmental pathogens (e.g., Aspergillus spp. and Legionella spp.) or airborne pathogens (e.g., Mycobacterium tuberculosis and varicella-zoster virus) can result in adverse patient outcomes and cause illness among health-care workers. Environmental infection-control strategies and engineering controls can effectively prevent these infections. The incidence of health-care--associated infections and pseudo-outbreaks can be minimized by 1) appropriate use of cleaners and disinfectants; 2) appropriate maintenance of medical equipment (e.g., automated endoscope reprocessors or hydrotherapy equipment); 3) adherence to water-quality standards for hemodialysis, and to ventilation standards for specialized care environments (e.g., airborne infection isolation rooms, protective environments, or operating rooms); and 4) prompt management of water intrusion into the facility. Routine environmental sampling is not usually advised, except for water quality determinations in hemodialysis settings and other situations where sampling is directed by epidemiologic principles, and results can be applied directly to infection-control decisions. This report reviews previous guidelines and strategies for preventing environment-associated infections in health-care facilities and offers recommendations. These include 1) evidence-based recommendations supported by studies; 2) requirements of federal agencies (e.g., Food and Drug Administration, U.S. Environmental Protection Agency, U.S. Department of Labor, Occupational Safety and Health Administration, and U.S. Department of Justice); 3) guidelines and standards from building and equipment professional organizations (e.g., American Institute of Architects, Association for the Advancement of Medical Instrumentation, and American Society of Heating, Refrigeration, and Air-Conditioning Engineers); 4) recommendations derived from scientific theory or rationale; and 5) experienced opinions based upon infection-control and engineering practices. The report also suggests a series of performance measurements as a means to evaluate infection-control efforts.

1,362 citations

Journal Article

[...]

TL;DR: A review of previous guidelines and strategies for preventing environment-associated infections in health-care facilities and offers recommendations can be found in this article, where the authors suggest a series of performance measurements as a means to evaluate infection-control efforts.
Abstract: The health-care facility environment is rarely implicated in disease transmission, except among patients who are immunocompromised. Nonetheless, inadvertent exposures to environmental pathogens (e.g., Aspergillus spp. and Legionella spp.) or airborne pathogens (e.g., Mycobacterium tuberculosis and varicella-zoster virus) can result in adverse patient outcomes and cause illness among health-care workers. Environmental infection-control strategies and engineering controls can effectively prevent these infections. The incidence of health-care--associated infections and pseudo-outbreaks can be minimized by 1) appropriate use of cleaners and disinfectants; 2) appropriate maintenance of medical equipment (e.g., automated endoscope reprocessors or hydrotherapy equipment); 3) adherence to water-quality standards for hemodialysis, and to ventilation standards for specialized care environments (e.g., airborne infection isolation rooms, protective environments, or operating rooms); and 4) prompt management of water intrusion into the facility. Routine environmental sampling is not usually advised, except for water quality determinations in hemodialysis settings and other situations where sampling is directed by epidemiologic principles, and results can be applied directly to infection-control decisions. This report reviews previous guidelines and strategies for preventing environment-associated infections in health-care facilities and offers recommendations. These include 1) evidence-based recommendations supported by studies; 2) requirements of federal agencies (e.g., Food and Drug Administration, U.S. Environmental Protection Agency, U.S. Department of Labor, Occupational Safety and Health Administration, and U.S. Department of Justice); 3) guidelines and standards from building and equipment professional organizations (e.g., American Institute of Architects, Association for the Advancement of Medical Instrumentation, and American Society of Heating, Refrigeration, and Air-Conditioning Engineers); 4) recommendations derived from scientific theory or rationale; and 5) experienced opinions based upon infection-control and engineering practices. The report also suggests a series of performance measurements as a means to evaluate infection-control efforts.

936 citations

Book

[...]

01 Jan 2005
TL;DR: This paper presents a meta-modelling framework for convection-Cartesian grids that automates and automates the very labor-intensive and therefore time-heavy and expensive process of convection itself.
Abstract: Introduction to Computational Fluid Dynamics is a textbook for advanced undergraduate and first year graduate students in mechanical, aerospace and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practising engineers will find this particularly useful for reference and for continuing education.

885 citations