scispace - formally typeset
Search or ask a question
Author

Thomas H. Miller

Other affiliations: Brunel University London
Bio: Thomas H. Miller is an academic researcher from King's College London. The author has contributed to research in topics: Gammarus pulex & Bioconcentration. The author has an hindex of 13, co-authored 16 publications receiving 645 citations. Previous affiliations of Thomas H. Miller include Brunel University London.

Papers
More filters
Journal ArticleDOI
TL;DR: The current analytical approaches and available occurrence and accumulation data in biota are compiled to review the current state of research in the field and provide evidence in support of the ‘Matthew Effect’ and raises critical questions about the use of targeted analyte lists for biomonitoring.

163 citations

Journal ArticleDOI
TL;DR: A new NGS-based method was combined with machine learning for age prediction and the model predicted age successfully for twins and ‘diseased’ individuals.
Abstract: The ability to estimate the age of the donor from recovered biological material at a crime scene can be of substantial value in forensic investigations. Aging can be complex and is associated with various molecular modifications in cells that accumulate over a person's lifetime including epigenetic patterns. The aim of this study was to use age-specific DNA methylation patterns to generate an accurate model for the prediction of chronological age using data from whole blood. In total, 45 age-associated CpG sites were selected based on their reported age coefficients in a previous extensive study and investigated using publicly available methylation data obtained from 1156 whole blood samples (aged 2-90 years) analysed with Illumina's genome-wide methylation platforms (27K/450K). Applying stepwise regression for variable selection, 23 of these CpG sites were identified that could significantly contribute to age prediction modelling and multiple regression analysis carried out with these markers provided an accurate prediction of age (R2=0.92, mean absolute error (MAE)=4.6 years). However, applying machine learning, and more specifically a generalised regression neural network model, the age prediction significantly improved (R2=0.96) with a MAE=3.3 years for the training set and 4.4 years for a blind test set of 231 cases. The machine learning approach used 16 CpG sites, located in 16 different genomic regions, with the top 3 predictors of age belonged to the genes NHLRC1, SCGN and CSNK1D. The proposed model was further tested using independent cohorts of 53 monozygotic twins (MAE=7.1 years) and a cohort of 1011 disease state individuals (MAE=7.2 years). Furthermore, we highlighted the age markers' potential applicability in samples other than blood by predicting age with similar accuracy in 265 saliva samples (R2=0.96) with a MAE=3.2 years (training set) and 4.0 years (blind test). In an attempt to create a sensitive and accurate age prediction test, a next generation sequencing (NGS)-based method able to quantify the methylation status of the selected 16 CpG sites was developed using the Illumina MiSeq® platform. The method was validated using DNA standards of known methylation levels and the age prediction accuracy has been initially assessed in a set of 46 whole blood samples. Although the resulted prediction accuracy using the NGS data was lower compared to the original model (MAE=7.5years), it is expected that future optimization of our strategy to account for technical variation as well as increasing the sample size will improve both the prediction accuracy and reproducibility.

160 citations

Journal ArticleDOI
TL;DR: This work presents for the first time, the successful application of an accurate retention time predictor and HRMS data-mining using the largest number of compounds to preliminarily identify new or emerging contaminants in wastewater and surface waters.

87 citations

Journal ArticleDOI
TL;DR: The approach showed that several pharmaceuticals have the potential to elicit effects but further investigation surrounding thresholds for effects would be required, and a new approach presented showed potential to be used to improve risk assessment for pharmaceuticals in the environment.

72 citations

Journal ArticleDOI
TL;DR: The development, characterisation and application of a new analytical method for multi-residue PPCP determination in the freshwater amphipod, Gammarus pulex will enable further understanding on the susceptibility and ecological effects of PPCPs in the aquatic environment.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Adsorption technologies are a low-cost alternative, easily used in developing countries where there is a dearth of advanced technologies, skilled personnel, and available capital, and adsorption appears to be the most broadly feasible pharmaceutical removal method.
Abstract: In the last few decades, pharmaceuticals, credited with saving millions of lives, have emerged as a new class of environmental contaminant. These compounds can have both chronic and acute harmful effects on natural flora and fauna. The presence of pharmaceutical contaminants in ground waters, surface waters (lakes, rivers, and streams), sea water, wastewater treatment plants (influents and effluents), soils, and sludges has been well doccumented. A range of methods including oxidation, photolysis, UV-degradation, nanofiltration, reverse osmosis, and adsorption has been used for their remediation from aqueous systems. Many methods have been commercially limited by toxic sludge generation, incomplete removal, high capital and operating costs, and the need for skilled operating and maintenance personnel. Adsorption technologies are a low-cost alternative, easily used in developing countries where there is a dearth of advanced technologies, skilled personnel, and available capital, and adsorption appears to be the most broadly feasible pharmaceutical removal method. Adsorption remediation methods are easily integrated with wastewater treatment plants (WWTPs). Herein, we have reviewed the literature (1990-2018) illustrating the rising environmental pharmaceutical contamination concerns as well as remediation efforts emphasizing adsorption.

1,170 citations

01 Jan 2016

950 citations

Journal ArticleDOI
TL;DR: This literature review summarizes the state of knowledge on the occurrence of antibiotics in the different aqueous environmental systems across the Europe, as reported since 2000 and provides an improved understanding on aquatic pollution by antibiotics to outline the European scenario.

789 citations

Journal ArticleDOI
TL;DR: The new functions of MetFrag greatly enhance the chance of identification success and have been incorporated into a command line interface in a flexible way designed to be integrated into high throughput workflows.
Abstract: The in silico fragmenter MetFrag, launched in 2010, was one of the first approaches combining compound database searching and fragmentation prediction for small molecule identification from tandem mass spectrometry data. Since then many new approaches have evolved, as has MetFrag itself. This article details the latest developments to MetFrag and its use in small molecule identification since the original publication. MetFrag has gone through algorithmic and scoring refinements. New features include the retrieval of reference, data source and patent information via ChemSpider and PubChem web services, as well as InChIKey filtering to reduce candidate redundancy due to stereoisomerism. Candidates can be filtered or scored differently based on criteria like occurence of certain elements and/or substructures prior to fragmentation, or presence in so-called “suspect lists”. Retention time information can now be calculated either within MetFrag with a sufficient amount of user-provided retention times, or incorporated separately as “user-defined scores” to be included in candidate ranking. The changes to MetFrag were evaluated on the original dataset as well as a dataset of 473 merged high resolution tandem mass spectra (HR-MS/MS) and compared with another open source in silico fragmenter, CFM-ID. Using HR-MS/MS information only, MetFrag2.2 and CFM-ID had 30 and 43 Top 1 ranks, respectively, using PubChem as a database. Including reference and retention information in MetFrag2.2 improved this to 420 and 336 Top 1 ranks with ChemSpider and PubChem (89 and 71 %), respectively, and even up to 343 Top 1 ranks (PubChem) when combining with CFM-ID. The optimal parameters and weights were verified using three additional datasets of 824 merged HR-MS/MS spectra in total. Further examples are given to demonstrate flexibility of the enhanced features. In many cases additional information is available from the experimental context to add to small molecule identification, which is especially useful where the mass spectrum alone is not sufficient for candidate selection from a large number of candidates. The results achieved with MetFrag2.2 clearly show the benefit of considering this additional information. The new functions greatly enhance the chance of identification success and have been incorporated into a command line interface in a flexible way designed to be integrated into high throughput workflows. Feedback on the command line version of MetFrag2.2 available at http://c-ruttkies.github.io/MetFrag/ is welcome.

610 citations

Journal ArticleDOI
TL;DR: The application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process has considerable implications for developing future therapies and their targeting.
Abstract: A variety of machine learning methods such as naive Bayesian, support vector machines and more recently deep neural networks are demonstrating their utility for drug discovery and development. These leverage the generally bigger datasets created from high-throughput screening data and allow prediction of bioactivities for targets and molecular properties with increased levels of accuracy. We have only just begun to exploit the potential of these techniques but they may already be fundamentally changing the research process for identifying new molecules and/or repurposing old drugs. The integrated application of such machine learning models for end-to-end (E2E) application is broadly relevant and has considerable implications for developing future therapies and their targeting. This Perspective describes the application of machine learning models in the design, synthesis and characterisation of molecules at different stages in the drug discovery and development process.

299 citations