scispace - formally typeset
Search or ask a question
Author

Thomas Heine

Bio: Thomas Heine is an academic researcher from Dresden University of Technology. The author has contributed to research in topics: Band gap & Density functional theory. The author has an hindex of 84, co-authored 423 publications receiving 24210 citations. Previous affiliations of Thomas Heine include Freiberg University of Mining and Technology & Jacobs University Bremen.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that quantum confinement in layered d-electron dichalcogenides results in tuning the electronic structure at the nanoscale, and the properties of related TmS2 nanolayers (Tm = W, Nb, Re) were studied.
Abstract: Bulk MoS2, a prototypical layered transition-metal dichalcogenide, is an indirect band gap semiconductor. Reducing its size to a monolayer, MoS2 undergoes a transition to the direct band semiconductor. We support this experimental observation by first principles calculations and show that quantum confinement in layered d-electron dichalcogenides results in tuning the electronic structure at the nanoscale. We further studied the properties of related TmS2 nanolayers (Tm = W, Nb, Re) and show that the isotopological WS2 exhibits similar electronic properties, while NbS2 and ReS2 remain metallic independent on size.

1,532 citations

Journal ArticleDOI
TL;DR: Two new chemically stable [acid and base] 2D crystalline covalent organic frameworks (COFs) were synthesized using combined reversible and irreversible organic reactions and showed strong resistance toward acid and boiling water and exceptional stability in base.
Abstract: Two new chemically stable [acid and base] 2D crystalline covalent organic frameworks (COFs) (TpPa-1 and TpPa-2) were synthesized using combined reversible and irreversible organic reactions. Syntheses of these COFs were done by the Schiff base reactions of 1,3,5-triformylphloroglucinol (Tp) with p-phenylenediamine (Pa-1) and 2,5-dimethyl-p-phenylenediamine (Pa-2), respectively, in 1:1 mesitylene/dioxane. The expected enol–imine (OH) form underwent irreversible proton tautomerism, and only the keto–enamine form was observed. Because of the irreversible nature of the total reaction and the absence of an imine bond in the system, TpPa-1 and TpPa-2 showed strong resistance toward acid (9 N HCl) and boiling water. Moreover, TpPa-2 showed exceptional stability in base (9 N NaOH) as well.

1,202 citations

Journal ArticleDOI
TL;DR: This Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities of atomically thin materials, as well as rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks.
Abstract: The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electronic properties including metals, semimetals, insulators and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared throughout the visible range. Thus, they have the potential to play a fundamental role in the future of nanoelectronics, optoelectronics and the assembly of novel ultrathin and flexible devices. We categorize the 2D materials according to their structure, composition and electronic properties. In this review we distinguish atomically thin materials (graphene, silicene, germanene, and their saturated forms; hexagonal boron nitride; silicon carbide), rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks. Our exhaustive data collection presented in this Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities. The key points of modern computational approaches applied to 2D materials are presented with special emphasis to cover their range of application, peculiarities and pitfalls.

1,136 citations

Journal ArticleDOI
TL;DR: Three thermally and chemically stable isoreticular covalent organic frameworks synthesized via room-temperature solvent-free mechanochemical grinding seemed to have a graphene-like layered morphology (exfoliated layers), unlike the parent COFs synthesized solvothermally.
Abstract: Three thermally and chemically stable isoreticular covalent organic frameworks (COFs) were synthesized via room-temperature solvent-free mechanochemical grinding. These COFs were successfully compared with their solvothermally synthesized counterparts in all aspects. These solvent-free mechanochemically synthesized COFs have moderate crystallinity with remarkable stability in boiling water, acid (9 N HCl), and base [TpBD (MC) in 3 N NaOH and TpPa-2 (MC) in 9 N NaOH]. Exfoliation of COF layers was simultaneously observed with COF formation during mechanochemical synthesis. The structures thus obtained seemed to have a graphene-like layered morphology (exfoliated layers), unlike the parent COFs synthesized solvothermally.

723 citations

Journal ArticleDOI
18 Aug 2017-Science
TL;DR: A fully π-conjugated molecular network attains high electronic spin density and unidirectional spin alignment and is synthesized through condensation reactions of tetrakis(4-formylphenyl)pyrene and 1,4-phenylenediacetonitrile.
Abstract: We synthesized a two-dimensional (2D) crystalline covalent organic framework (sp2c-COF) that was designed to be fully π-conjugated and constructed from all sp2 carbons by C=C condensation reactions of tetrakis(4-formylphenyl)pyrene and 1,4-phenylenediacetonitrile. The C=C linkages topologically connect pyrene knots at regular intervals into a 2D lattice with π conjugations extended along both x and y directions and develop an eclipsed layer framework rather than the more conventionally obtained disordered structures. The sp2c-COF is a semiconductor with a discrete band gap of 1.9 electron volts and can be chemically oxidized to enhance conductivity by 12 orders of magnitude. The generated radicals are confined on the pyrene knots, enabling the formation of a paramagnetic carbon structure with high spin density. The sp2 carbon framework induces ferromagnetic phase transition to develop spin-spin coherence and align spins unidirectionally across the material.

704 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations

Journal ArticleDOI
TL;DR: Ultraensitive monolayer MoS2 phototransistors with improved device mobility and ON current are demonstrated, showing important potential for applications in MoS 2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy.
Abstract: A very sensitive photodector based on molybdenum disulphide with potential for integrated optoelectronic circuits, light sensing, biomedical imaging, video recording or spectroscopy is now demonstrated.

4,212 citations