Author

# Thomas Hofmann

Other affiliations: Technische Universität Darmstadt, International Computer Science Institute, Max Planck Society ...read more

Bio: Thomas Hofmann is an academic researcher from ETH Zurich. The author has contributed to research in topics: Support vector machine & Medicine. The author has an hindex of 75, co-authored 339 publications receiving 38818 citations. Previous affiliations of Thomas Hofmann include Technische Universität Darmstadt & International Computer Science Institute.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data.

Abstract: Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized model is able to deal with domain{specific synonymy as well as with polysemous words. In contrast to standard Latent Semantic Indexing (LSI) by Singular Value Decomposition, the probabilistic variant has a solid statistical foundation and defines a proper generative data model. Retrieval experiments on a number of test collections indicate substantial performance gains over direct term matching methods as well as over LSI. In particular, the combination of models with different dimensionalities has proven to be advantageous.

4,451 citations

••

[...]

Brown University

^{1}TL;DR: This paper proposes to make use of a temperature controlled version of the Expectation Maximization algorithm for model fitting, which has shown excellent performance in practice, and results in a more principled approach with a solid foundation in statistical inference.

Abstract: This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of co-occurrence tables, the proposed technique uses a generative latent class model to perform a probabilistic mixture decomposition. This results in a more principled approach with a solid foundation in statistical inference. More precisely, we propose to make use of a temperature controlled version of the Expectation Maximization algorithm for model fitting, which has shown excellent performance in practice. Probabilistic Latent Semantic Analysis has many applications, most prominently in information retrieval, natural language processing, machine learning from text, and in related areas. The paper presents perplexity results for different types of text and linguistic data collections and discusses an application in automated document indexing. The experiments indicate substantial and consistent improvements of the probabilistic method over standard Latent Semantic Analysis.

2,441 citations

•

[...]

TL;DR: This work proposes a widely applicable generalization of maximum likelihood model fitting by tempered EM, based on a mixture decomposition derived from a latent class model which results in a more principled approach which has a solid foundation in statistics.

Abstract: Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two-mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occurrence tables, the proposed method is based on a mixture decomposition derived from a latent class model. This results in a more principled approach which has a solid foundation in statistics. In order to avoid overfitting, we propose a widely applicable generalization of maximum likelihood model fitting by tempered EM. Our approach yields substantial and consistent improvements over Latent Semantic Analysis in a number of experiments.

2,306 citations

•

[...]

TL;DR: This paper proposes to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation and presents a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems.

Abstract: Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary issue of designing classification algorithms that can deal with more complex outputs, such as trees, sequences, or sets. More generally, we consider problems involving multiple dependent output variables, structured output spaces, and classification problems with class attributes. In order to accomplish this, we propose to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation. While this leads to a quadratic program with a potentially prohibitive, i.e. exponential, number of constraints, we present a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains involving different types of output spaces emphasize the breadth and generality of our approach.

2,243 citations

•

[...]

TL;DR: Probabilistic Latent Semantic Analysis (PLSA) as mentioned in this paper is a statistical technique for the analysis of two-mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text and in related areas.

Abstract: Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two-mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occurrence tables, the proposed method is based on a mixture decomposition derived from a latent class model. This results in a more principled approach which has a solid foundation in statistics. In order to avoid overfitting, we propose a widely applicable generalization of maximum likelihood model fitting by tempered EM. Our approach yields substantial and consistent improvements over Latent Semantic Analysis in a number of experiments.

2,233 citations

##### Cited by

More filters

••

[...]

TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.

Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

•

[...]

TL;DR: This paper proposed a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI).

Abstract: We propose a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams [6], and Hof-mann's aspect model, also known as probabilistic latent semantic indexing (pLSI) [3]. In the context of text modeling, our model posits that each document is generated as a mixture of topics, where the continuous-valued mixture proportions are distributed as a latent Dirichlet random variable. Inference and learning are carried out efficiently via variational algorithms. We present empirical results on applications of this model to problems in text modeling, collaborative filtering, and text classification.

25,546 citations

••

[...]

University of Leeds

^{1}, Katholieke Universiteit Leuven^{2}, University of Edinburgh^{3}, Microsoft^{4}, University of Oxford^{5}TL;DR: The state-of-the-art in evaluated methods for both classification and detection are reviewed, whether the methods are statistically different, what they are learning from the images, and what the methods find easy or confuse.

Abstract: The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection.
This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.

15,935 citations

•

[...]

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.

Abstract: Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all have the same weights but have progressively more negative biases. The learning and inference rules for these "Stepped Sigmoid Units" are unchanged. They can be approximated efficiently by noisy, rectified linear units. Compared with binary units, these units learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset. Unlike binary units, rectified linear units preserve information about relative intensities as information travels through multiple layers of feature detectors.

14,799 citations

••

[...]

TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.

Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations