scispace - formally typeset
Search or ask a question
Author

Thomas Hörren

Bio: Thomas Hörren is an academic researcher from University of Duisburg-Essen. The author has contributed to research in topics: Biodiversity & Biology. The author has an hindex of 2, co-authored 5 publications receiving 1451 citations.
Topics: Biodiversity, Biology, Ecology, Invertebrate, Fauna

Papers
More filters
Journal ArticleDOI
18 Oct 2017-PLOS ONE
TL;DR: This analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study, and shows that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline.
Abstract: Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape.

2,065 citations

Journal ArticleDOI
TL;DR: The new processing pipeline for DNA barcode data allows for the rapid and easy identification of inconsistencies in large datasets, which can be dealt with before submitting them to public data repositories like BOLD or GenBank, while avoiding the deterioration of the accuracy of the data repositories due to ambiguously identified or contaminated specimens.
Abstract: 1.In recent years, large-scale DNA barcoding campaigns have generated an enormous amount of COI barcodes, which are usually stored in NCBI's GenBank and the official Barcode of Life database (BOLD). BOLD data are generally associated with more detailed and better curated meta-data, because a great proportion is based on expert-verified and vouchered material, accessible in public collections. In the course of the initiative German Barcode of Life (GBOL), data were generated for the reference library of 2,846 species of Coleoptera from 13,516 individuals. 2.Confronted with the high effort associated with the identification, verification and data validation, a bioinformatic pipeline, “TaxCI” was developed that i) identifies taxonomic inconsistencies in a given tree topology (optionally including a reference data set), ii) discriminates between different cases of incongruence in order to identify contamination or misidentified specimens, iii) graphically marks those cases in the tree, which finally can be checked again and, if needed, corrected or removed from the dataset. For this, “TaxCI” may use DNA-based species delimitations from other approaches (e.g., mPTP) or may perform implemented threshold-based clustering. 3.The data-processing pipeline was tested on a newly generated set of barcodes, using the available BOLD records as a reference. A data revision based on the first run of the TaxCI tool resulted in the second TaxCI analysis in a taxonomic match ratio very similar to the one recorded from the reference set (92 vs 94%). The revised dataset improved by nearly 20% through this procedure compared to the original, uncorrected one. 4.Overall, the new processing pipeline for DNA barcode data allows for the rapid and easy identification of inconsistencies in large datasets, which can be dealt with before submitting them to public data repositories like BOLD or GenBank. Ultimately, this will increase the quality of submitted data and the speed of data submission, while primarily avoiding the deterioration of the accuracy of the data repositories due to ambiguously identified or contaminated specimens. This article is protected by copyright. All rights reserved.

39 citations

Journal ArticleDOI
TL;DR: The Diversity of Insects in Nature protected Areas (DINA) project as mentioned in this paper investigates insect communities in 21 nature reserves in Germany and uses a DNA metabarcoding approach for species identification.
Abstract: Insect declines and biodiversity loss have attracted much attention in recent years, but lack of comprehensive data, conflicting interests among stakeholders and insufficient policy guidance hinder progress in preserving biodiversity. The project DINA (Diversity of Insects in Nature protected Areas) investigates insect communities in 21 nature reserves in Germany. All selected conservation sites border arable land, with agricultural practices assumed to influence insect populations. We taught citizen scientists how to manage Malaise traps for insect collection, and subsequently used a DNA metabarcoding approach for species identification. Vegetation surveys, plant metabarcoding as well as geospatial and ecotoxicological analyses will help to unravel contributing factors for the deterioration of insect communities. As a pioneering research project in this field, DINA includes a transdisciplinary dialogue involving relevant stakeholders such as local authorities, policymakers, and farmers, which aims at a shared understanding of conservation goals and action pathways. Stakeholder engagement combined with scientific results will support the development of sound policy recommendations to improve legal frameworks, landscape planning, land use, and conservation strategies. With this transdisciplinary approach, we aim to provide the background knowledge to implement policy strategies that will halt further decline of insects in German protected areas.

9 citations

Journal ArticleDOI
TL;DR: In this article, a database of European EPTs' aerial dispersal distances reported in empirical studies and compared them to the dispersal capacity of the species as described by five different dispersal indices (original and modified versions of Li's Dispersal Capacity Metric DCM and Sarremejane's Species Flying Propensity SFP as well as relative wing length).

9 citations

Journal ArticleDOI
05 Oct 2021-PeerJ
TL;DR: In this article, a size sorting strategy for Malaise trap samples that maximizes taxonomic recovery but remains scalable and time efficient was proposed. But the results showed that the small size fractions harboured the highest diversity and were best represented when pooling in favour of small specimens.
Abstract: Background Small and rare specimens can remain undetected when metabarcoding is applied on bulk samples with a high specimen size heterogeneity. This is especially critical for Malaise trap samples, where most of the biodiversity is contributed by small taxa with low biomass. The separation of samples in different size fractions for downstream analysis is one possibility to increase detection of small and rare taxa. However, experiments systematically testing different size sorting approaches and subsequent proportional pooling of fractions are lacking, but would provide important information for the optimization of metabarcoding protocols. We set out to find a size sorting strategy for Malaise trap samples that maximizes taxonomic recovery but remains scalable and time efficient. Methods Three Malaise trap samples were sorted into four size classes using dry sieving. Each fraction was homogenized and lysed. The corresponding lysates were pooled to simulate unsorted samples. Pooling was additionally conducted in equal proportions and in four different proportions enriching the small size fraction of samples. DNA from the individual size classes as well as the pooled fractions was extracted and metabarcoded using the FwhF2 and Fol-degen-rev primer set. Additionally, alternative wet sieving strategies were explored. Results The small size fractions harboured the highest diversity and were best represented when pooling in favour of small specimens. Metabarcoding of unsorted samples decreases taxon recovery compared to size sorted samples. A size separation into only two fractions (below 4 mm and above) can double taxon recovery compared to not size sorting. However, increasing the sequencing depth 3- to 4-fold can also increase taxon recovery to levels comparable with size sorting, but remains biased towards biomass rich taxa in the sample. Conclusion We demonstrate that size fractionation of Malaise trap bulk samples can increase taxon recovery. While results show distinct patterns, the lack of statistical support due to the limited number of samples processed is a limitation. Due to increased speed and lower risk of cross-contamination as well as specimen damage we recommend wet sieving and proportional pooling of the lysates in favour of the small size fraction (80-90% volume). However, for large-scale projects with time constraints, increasing sequencing depth is an alternative solution.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Food in the Anthropocene : the EAT-Lancet Commission on healthy diets from sustainable food systems focuses on meat, fish, vegetables and fruit as sources of protein.

4,710 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of 73 historical reports of insect declines from across the globe, and systematically assess the underlying drivers of insect extinction, reveals dramatic rates of decline that may lead to the extinction of 40% of the world's insect species over the next few decades.

1,754 citations

Journal ArticleDOI
31 Oct 2019-Nature
TL;DR: The results suggest that major drivers of arthropod decline act at larger spatial scales, and are associated with agriculture at the landscape level, which implies that policies need to address the landscape scale to mitigate the negative effects of land-use practices.
Abstract: Recent reports of local extinctions of arthropod species1, and of massive declines in arthropod biomass2, point to land-use intensification as a major driver of decreasing biodiversity. However, to our knowledge, there are no multisite time series of arthropod occurrences across gradients of land-use intensity with which to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected, and whether the observed declines in biomass and diversity are linked to one another. Here we analyse data from more than 1 million individual arthropods (about 2,700 species), from standardized inventories taken between 2008 and 2017 at 150 grassland and 140 forest sites in 3 regions of Germany. Overall gamma diversity in grasslands and forests decreased over time, indicating loss of species across sites and regions. In annually sampled grasslands, biomass, abundance and number of species declined by 67%, 78% and 34%, respectively. The decline was consistent across trophic levels and mainly affected rare species; its magnitude was independent of local land-use intensity. However, sites embedded in landscapes with a higher cover of agricultural land showed a stronger temporal decline. In 30 forest sites with annual inventories, biomass and species number—but not abundance—decreased by 41% and 36%, respectively. This was supported by analyses of all forest sites sampled in three-year intervals. The decline affected rare and abundant species, and trends differed across trophic levels. Our results show that there are widespread declines in arthropod biomass, abundance and the number of species across trophic levels. Arthropod declines in forests demonstrate that loss is not restricted to open habitats. Our results suggest that major drivers of arthropod decline act at larger spatial scales, and are (at least for grasslands) associated with agriculture at the landscape level. This implies that policies need to address the landscape scale to mitigate the negative effects of land-use practices. Analyses of a dataset of arthropod biomass, abundance and diversity in grassland and forest habitats in Germany for the period 2008–2017 reveal that drivers of arthropod declines act at the landscape level.

625 citations

Journal ArticleDOI
TL;DR: Wagner et al. as discussed by the authors found that more than half of all amphibians are imperiled and more than 80% of all vertebrate species are in danger of extinction over the next few decades.
Abstract: Nature is under siege. In the last 10,000 y the human population has grown from 1 million to 7.8 billion. Much of Earth’s arable lands are already in agriculture (1), millions of acres of tropical forest are cleared each year (2, 3), atmospheric CO2 levels are at their highest concentrations in more than 3 million y (4), and climates are erratically and steadily changing from pole to pole, triggering unprecedented droughts, fires, and floods across continents. Indeed, most biologists agree that the world has entered its sixth mass extinction event, the first since the end of the Cretaceous Period 66 million y ago, when more than 80% of all species, including the nonavian dinosaurs, perished. Ongoing losses have been clearly demonstrated for better-studied groups of organisms. Terrestrial vertebrate population sizes and ranges have contracted by one-third, and many mammals have experienced range declines of at least 80% over the last century (5). A 2019 assessment suggests that half of all amphibians are imperiled (2.5% of which have recently gone extinct) (6). Bird numbers across North America have fallen by 2.9 billion since 1970 (7). Prospects for the world’s coral reefs, beyond the middle of this century, could scarcely be more dire (8). A 2020 United Nations report estimated that more than a million species are in danger of extinction over the next few decades (9), but also see the more bridled assessments in refs. 10 and 11. Although a flurry of reports has drawn attention to declines in insect abundance, biomass, species richness, and range sizes (e.g., refs. 12⇓⇓⇓⇓⇓–18; for reviews see refs. 19 and 20), whether the rates of declines for insects are on par with or exceed those for other groups remains unknown. There are still too … [↵][1]1To whom correspondence may be addressed. Email: david.wagner{at}uconn.edu. [1]: #xref-corresp-1-1

609 citations

Journal ArticleDOI
TL;DR: Because the geographic extent and magnitude of insect declines are largely unknown, there is an urgent need for monitoring efforts, especially across ecological gradients, which will help to identify important causal factors in declines.
Abstract: Insect declines are being reported worldwide for flying, ground, and aquatic lineages. Most reports come from western and northern Europe, where the insect fauna is well-studied and there are consi...

607 citations