scispace - formally typeset
Search or ask a question
Author

Thomas J. Fielder

Bio: Thomas J. Fielder is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Chlamydia trachomatis & Bacterial outer membrane. The author has an hindex of 11, co-authored 16 publications receiving 15350 citations.

Papers
More filters
Journal ArticleDOI
26 Mar 1993-Cell
TL;DR: In this article, the authors used haplotype analysis of linkage disequilibrium to spotlight a small segment of 4p16.3 as the likely location of the defect, which is expanded and unstable on HD chromosomes.

7,224 citations

Journal Article
25 Mar 1993-Cell
TL;DR: The Huntington's disease mutation involves an unstable DNA segment, similar to those described in fragile X syndrome, spino-bulbar muscular atrophy, and myotonic dystrophy, acting in the context of a novel 4p16.3 gene to produce a dominant phenotype.

6,992 citations

Journal ArticleDOI
29 Jul 1994-Cell
TL;DR: DNA studies revealed point mutations in the FGFR3 gene in ACH heterozygotes and homozygotes, which result in the substitution of an arginine residue for a glycine at position 380 of the mature protein, which is in the transmembrane domain ofFGFR3.

1,207 citations

Journal ArticleDOI
TL;DR: Only clinically typical hyperekplexia appears to be consistently associated with GLRA1 mutations, and these affect a specific extracellular domain of the protein.
Abstract: Hyperekplexia is a rare, autosomal dominant neurological disorder characterized by hypertonia, especially in infancy, and by an exaggerated startle response. This disorder is caused by mutations in the ϵ1 subunit of the inhibitory glycine receptor (GLRA1). We previously reported two GLRA1 point mutations detected in 4 unrelated hyperekplexia families; both mutations were at nucleotide 1192 and resulted in the replacement of Arg271 by a glutamine (R271Q) in one case and a leucine (R271L) in the other. Here, 5 additional hyperekplexia families are shown to have the most common G-to-A transition mutation at nucleotide 1192. Haplotype analysis using polymorphisms within and close to the GLRA1 locus suggests that this mutation has arisen at least twice (and possibly four times). In 2 additional families, a third mutation is also presented that changes a tyrosine at amino acid 279 to a cysteine (Y279C). Five patients with atypical clinical features and equivocal or absent family history of hyperekplexia and 1 patient with a classical presentation but no family history are presented in whom a mutation in the GLRA1 gene was not detected. Thus, only clinically typical hyperekplexia appears to be consistently associated with GLRA1 mutations, and these affect a specific extracellular domain of the protein.

121 citations

Journal ArticleDOI
TL;DR: Female BALB/c mice were immunized intranasally with the mouse pneumonitis biovar of Chlamydia trachomatis and subsequently challenged in the ovarian bursa and mounted a significant immune response to chlamydial antigens, as shown by a lymphocyte proliferation assay, compared with the sham-immunized nonchallenged mice.
Abstract: Female BALB/c mice were immunized intranasally with the mouse pneumonitis biovar of Chlamydia trachomatis and subsequently challenged in the ovarian bursa (C. trachomatis immunized, C. trachomatis challenged). Two groups of mice served as controls. One group was sham immunized intranasally with mock-infected HeLa 229 cell extracts and was challenged in the ovarian bursa with C. trachomatis MoPn (sham immunized, C. trachomatis challenged). The second control group was sham immunized and not challenged (sham immunized, nonchallenged). Before challenge, the C. trachomatis-immunized, C. trachomatis-challenged animals mounted a significant humoral response as shown by high immunoglobulin G (IgG), IgM, and IgA levels and high levels of neutralizing antibodies in serum and moderate IgG and IgA titers in vaginal secretions. Reactivity by Western blot (immunoblot) to the lipopolysaccharide, 30-, 40- (major outer membrane protein), and 60-kDa cysteine-rich proteins and 75- and 100-kDa chlamydial components could be demonstrated. However, reactivity to the 60-kDa heat shock protein was only observed 22 days after challenge. In addition, this group of animals mounted a significant immune response to chlamydial antigens, as shown by a lymphocyte proliferation assay, compared with the sham-immunized nonchallenged mice. After intrabursal challenge, there was no C. trachomatis shedding from the vagina in the C. trachomatis-immunized, C. trachomatis-challenged animals, while 63% of the sham-immunized, C. trachomatis-challenged mice had a positive C. trachomatis culture. In addition, histological sections from the genital tract showed, at 2 weeks postchallenge, a marked acute inflammatory reaction in the sham-immunized, C. trachomatis-challenged animals while in the C. trachomatis-immunized, C. trachomatis-challenged mice there was minimal inflammatory reaction. When the animals were mated, only 12% of the mice from the sham-immunized, C. trachomatis-challenged mice were fertile. In contrast, 94 and 80% of the sham-immunized, nonchallenged and C. trachomatis-immunized, C. trachomatis-challenged mice, respectively, were fertile.

103 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new algorithm for finding tandem repeats which works without the need to specify either the pattern or pattern size is presented and its ability to detect tandem repeats that have undergone extensive mutational change is demonstrated.
Abstract: A tandem repeat in DNA is two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats have been shown to cause human disease, may play a variety of regulatory and evolutionary roles and are important laboratory and analytic tools. Extensive knowledge about pattern size, copy number, mutational history, etc. for tandem repeats has been limited by the inability to easily detect them in genomic sequence data. In this paper, we present a new algorithm for finding tandem repeats which works without the need to specify either the pattern or pattern size. We model tandem repeats by percent identity and frequency of indels between adjacent pattern copies and use statistically based recognition criteria. We demonstrate the algorithm’s speed and its ability to detect tandem repeats that have undergone extensive mutational change by analyzing four sequences: the human frataxin gene, the human β T cell receptor locus sequence and two yeast chromosomes. These sequences range in size from 3 kb up to 700 kb. A World Wide Web server interface at c3.biomath.mssm.edu/trf.html has been established for automated use of the program.

6,577 citations

Journal ArticleDOI
TL;DR: Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.
Abstract: The distinct protein aggregates that are found in Alzheimer's, Parkinson's, Huntington's and prion diseases seem to cause these disorders. Small intermediates - soluble oligomers - in the aggregation process can confer synaptic dysfunction, whereas large, insoluble deposits might function as reservoirs of the bioactive oligomers. These emerging concepts are exemplified by Alzheimer's disease, in which amyloid beta-protein oligomers adversely affect synaptic structure and plasticity. Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.

4,499 citations

Journal ArticleDOI
29 Jun 1995-Nature
TL;DR: A minimal cosegregating region containing the AD3 gene is defined, and at least 19 different transcripts encoded within this region corresponds to a novel gene whose product is predicted to contain multiple transmembrane domains and resembles an integral membrane protein.
Abstract: Some cases of Alzheimer's disease are inherited as an autosomal dominant trait. Genetic linkage studies have mapped a locus (AD3) associated with susceptibility to a very aggressive form of Alzheimer's disease to chromosome 14q24.3. We have defined a minimal cosegregating region containing the AD3 gene, and isolated at least 19 different transcripts encoded within this region. One of these transcripts (S182) corresponds to a novel gene whose product is predicted to contain multiple transmembrane domains and resembles an integral membrane protein. Five different missense mutations have been found that cosegregate with early-onset familial Alzheimer's disease. Because these changes occurred in conserved domains of this gene, and are not present in normal controls, they are likely to be causative of AD3.

4,110 citations

Journal ArticleDOI
29 Oct 1993-Science
TL;DR: Two broad mechanisms--oxidative stress and excessive activation of glutamate receptors--are converging and represent sequential as well as interacting processes that provide a final common pathway for cell vulnerability in the brain.
Abstract: There is an increasing amount of experimental evidence that oxidative stress is a causal, or at least an ancillary, factor in the neuropathology of several adult neurodegenerative disorders, as well as in stroke, trauma, and seizures. At the same time, excessive or persistent activation of glutamate-gated ion channels may cause neuronal degeneration in these same conditions. Glutamate and related acidic amino acids are thought to be the major excitatory neurotransmitters in brain and may be utilized by 40 percent of the synapses. Thus, two broad mechanisms--oxidative stress and excessive activation of glutamate receptors--are converging and represent sequential as well as interacting processes that provide a final common pathway for cell vulnerability in the brain. The broad distribution in brain of the processes regulating oxidative stress and mediating glutamatergic neurotransmission may explain the wide range of disorders in which both have been implicated. Yet differential expression of components of the processes in particular neuronal systems may account for selective neurodegeneration in certain disorders.

3,844 citations

Journal ArticleDOI
TL;DR: Evidence is provided that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.
Abstract: SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of complex traits in human populations. Where is the remaining heritability? We estimated the proportion of variance for human height explained by 294,831 SNPs genotyped on 3,925 unrelated individuals using a linear model analysis, and validated the estimation method with simulations based on the observed genotype data. We show that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is not missing but has not previously been detected because the individual effects are too small to pass stringent significance tests. We provide evidence that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.

3,759 citations