scispace - formally typeset
Search or ask a question
Author

Thomas J. Immel

Bio: Thomas J. Immel is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Ionosphere & Thermosphere. The author has an hindex of 26, co-authored 63 publications receiving 3257 citations. Previous affiliations of Thomas J. Immel include University of California & Space Sciences Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Immel et al. as discussed by the authors showed that ionospheric densities vary with the strength of nonmigrating, diurnal atmospheric tides that are, in turn, driven mainly by weather in the tropics.
Abstract: [1] A newly discovered 1000-km scale longitudinal variation in ionospheric densities is an unexpected and heretofore unexplained phenomenon. Here we show that ionospheric densities vary with the strength of nonmigrating, diurnal atmospheric tides that are, in turn, driven mainly by weather in the tropics. A strong connection between tropospheric and ionospheric conditions is unexpected, as these upward propagating tides are damped far below the peak in ionospheric density. The observations can be explained by consideration of the dynamo interaction of the tides with the lower ionosphere (E-layer) in daytime. The influence of persistent tropical rainstorms is therefore an important new consideration for space weather. Citation: Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton (2006), Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161. [2] The ionosphere is the region of highest plasma density in Earth’s space environment. It is a dynamic environment supporting a host of plasma instability processes, with important implications for global communications and geo-location applications. Produced by the ionization of the neutral atmosphere by solar x-ray and UV radiation, the uppermost ionospheric layer has the highest plasma density with a peak around 350–400 km altitude and primarily consists of O + ions. This is called the F-layer and it is considered to be a collisionless environment such that the charged particles interact only weakly with the neutral atmosphere, lingering long after sunset. The E-layer is composed of molecular ions and is located between 100–150 km where collisions between ions and neutrals are much more frequent, with the result that the layer recombines and is reduced in density a hundredfold soon after sunset [Rees ,1 989;Heelis, 2004]. The respective altitude regimes of these two layers are commonly called the E- and F-regions. [3] The ionosphere glows as O + ions recombine to an excited state of atomic oxygen (O I) at a rate proportional to

597 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the global characteristics of the nighttime equatorial anomaly (EA) by constructing a constant local time map (LT map), in which pixels within an assigned local time range are extracted from the IMAGE/FUV nightglow images obtained over an observation period of 3 days or more and are put together to compose a global distribution map of emission intensities at that local time.
Abstract: [1] The Far Ultraviolet Imager (FUV) on board the IMAGE satellite provides an instantaneous global view of the OI 135.6-nm nightglow with 2 min time resolution. Because the OI 135.6-nm emission from the nighttime ionosphere is determined by the line-of-sight integrated plasma density, the nightglow images are useful for studying the nighttime low-latitude ionosphere globally. With the IMAGE/FUV 135.6-nm observations from March to June 2002, we have examined the global characteristics of the nighttime equatorial anomaly (EA) by constructing a constant local time map (LT map), in which pixels within an assigned local time range are extracted from the IMAGE/FUV nightglow images obtained over an observation period of 3 days or more and are put together to compose a global distribution map of emission intensities at that local time. These LT maps show that the development of the EA has a significant longitudinal structure, in which peaks and dips of the crest emission intensity and the crest latitude have about 90° longitudinal separation in the longitude range from 0° to 250°. Although there is not enough data over the American sector, this result suggests that the EA longitudinal structure has a prominent zonal component of the wave number 4. The observed longitudinal structure of the nighttime EA could not be fully explained by factors such as the empirical electric field and neutral wind models, the geomagnetic declination angle, or the displacement of the geomagnetic equator from the geographic equator. To explain the observed longitudinal structure of the EA, in particular, the wave number 4 feature, we may need to consider other forcing, for example, nonmigrating tide originated from the lower atmosphere.

290 citations

Journal ArticleDOI
TL;DR: In this article, the post-sunset EIA made by the IMAGE and TIMED satellites are compared with CHAMP, Orsted and SAC-C observations of the noontime equatorial electrojet (EEJ).
Abstract: [1] Polarization electric fields created by the E- and F-region dynamos cause the uplift of F-region plasma. The subsequent redistribution of that plasma along the magnetic field lines creates the equatorial ionospheric anomaly (EIA). Observations of the post-sunset EIA made by the IMAGE and TIMED satellites are compared here with CHAMP, Orsted and SAC-C observations of the noontime equatorial electrojet (EEJ). During magnetically quiet periods around equinox, the EIA and EEJ show a remarkably similar four-peaked wave-like longitudinal variation. Its structure is consistent with the longitudinal variation in the strength of diurnal tides that drive the E-region dynamo. This indicates a strong vertical coupling between the ionosphere and troposphere because the four-peaked tidal structure is driven by tropospheric weather. Furthermore, the dayside ionospheric conditions are found to perform the global-scale longitudinal structure of the post-sunset ionosphere at low latitudes.

237 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the Oct 28, Oct 29 and the Bastille Day (X10) events using the SOHO SEM 26.0 to 34.0 nm EUV and TIMED SEE 0.1-194 nm data.
Abstract: [1] Some of the most intense solar flares measured in 0.1 to 0.8 nm x-rays in recent history occurred near the end of 2003. The Nov 4 event is the largest in the NOAA records (X28) and the Oct 28 flare was the fourth most intense (X17). The Oct 29 flare was class X7. These flares are compared and contrasted to the July 14, 2000 Bastille Day (X10) event using the SOHO SEM 26.0 to 34.0 nm EUV and TIMED SEE 0.1–194 nm data. High time resolution, ∼30s ground-base GPS data and the GUVI FUV dayglow data are used to examine the flare-ionosphere relationship. In the 26.0 to 34.0 nm wavelength range, the Oct 28 flare is found to have a peak intensity greater than twice that of the Nov 4 flare, indicating strong spectral variability from flare-to-flare. Solar absorption of the EUV portion of the Nov 4 limb event is a possible cause. The dayside ionosphere responds dramatically (∼2.5 min 1/e rise time) to the x-ray and EUV input by an abrupt increase in total electron content (TEC). The Oct 28 TEC ionospheric peak enhancement at the subsolar point is ∼25 TECU (25 × 1012 electrons/cm2) or 30% above background. In comparison, the Nov 4, Oct 29 and the Bastille Day events have ∼5–7 TECU peak enhancements above background. The Oct 28 TEC enhancement lasts ∼3 hrs, far longer than the flare duration. This latter ionospheric feature is consistent with increased electron production in the middle altitude ionosphere, where recombination rates are low. It is the EUV portion of the flare spectrum that is responsible for photoionization of this region. Further modeling will be necessary to fully understand the detailed physics and chemistry of flare-ionosphere coupling.

213 citations

Journal ArticleDOI
TL;DR: In this article, a series of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) were designed to replicate and facilitate the interpretation of the longitudinal structure discovered in IMAGE satellite airglow observations of the equatorial ionization anomaly (EIA) at the far-ultraviolet (FUV) 135.6-nm wavelength during March-April 2002 equinox.
Abstract: [1] We report on a series of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) which were designed to replicate and facilitate the interpretation of the longitudinal structure discovered in IMAGE satellite airglow observations of the equatorial ionization anomaly (EIA) at the far-ultraviolet (FUV) 135.6-nm wavelength during March–April 2002 equinox. Our TIME-GCM results indicate that the four-peaked longitudinal variation in the EIA observed by IMAGE-FUV near 20:00 local solar time can be explained by the effects of an eastward propagating zonal wavenumber-3 diurnal tide (DE3) that is excited by latent heat release associated with raindrop formation in the tropical troposphere.

211 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Immel et al. as discussed by the authors showed that ionospheric densities vary with the strength of nonmigrating, diurnal atmospheric tides that are, in turn, driven mainly by weather in the tropics.
Abstract: [1] A newly discovered 1000-km scale longitudinal variation in ionospheric densities is an unexpected and heretofore unexplained phenomenon. Here we show that ionospheric densities vary with the strength of nonmigrating, diurnal atmospheric tides that are, in turn, driven mainly by weather in the tropics. A strong connection between tropospheric and ionospheric conditions is unexpected, as these upward propagating tides are damped far below the peak in ionospheric density. The observations can be explained by consideration of the dynamo interaction of the tides with the lower ionosphere (E-layer) in daytime. The influence of persistent tropical rainstorms is therefore an important new consideration for space weather. Citation: Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton (2006), Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161. [2] The ionosphere is the region of highest plasma density in Earth’s space environment. It is a dynamic environment supporting a host of plasma instability processes, with important implications for global communications and geo-location applications. Produced by the ionization of the neutral atmosphere by solar x-ray and UV radiation, the uppermost ionospheric layer has the highest plasma density with a peak around 350–400 km altitude and primarily consists of O + ions. This is called the F-layer and it is considered to be a collisionless environment such that the charged particles interact only weakly with the neutral atmosphere, lingering long after sunset. The E-layer is composed of molecular ions and is located between 100–150 km where collisions between ions and neutrals are much more frequent, with the result that the layer recombines and is reduced in density a hundredfold soon after sunset [Rees ,1 989;Heelis, 2004]. The respective altitude regimes of these two layers are commonly called the E- and F-regions. [3] The ionosphere glows as O + ions recombine to an excited state of atomic oxygen (O I) at a rate proportional to

597 citations

Journal ArticleDOI
TL;DR: A brief history of the IRI project is given, the latest version of the model, IRI-2012, is described and efforts to develop a real-time IRI model are discussed.
Abstract: The International Reference Ionosphere (IRI) project was established jointly by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) in the late sixties with the goal to develop an international standard for the specification of plasma parameters in the Earth’s ionosphere. COSPAR needed such a specification for the evaluation of environmental effects on spacecraft and experiments in space, and URSI for radiowave propagation studies and applications. At the request of COSPAR and URSI, IRI was developed as a data-based model to avoid the uncertainty of theory-based models which are only as good as the evolving theoretical understanding. Being based on most of the available and reliable observations of the ionospheric plasma from the ground and from space, IRI describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 km to 2000 km. A working group of about 50 international ionospheric experts is in charge of developing and improving the IRI model. Over time as new data became available and new modeling techniques emerged, steadily improved editions of the IRI model have been published. This paper gives a brief history of the IRI project and describes the latest version of the model, IRI-2012. It also briefly discusses efforts to develop a real-time IRI model. The IRI homepage is at http://IRImodel.org.

572 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate extreme ionospheric response to the large interplanetary electric fields during the "Halloween" storms that occurred on October 29 and 30, 2003.
Abstract: We demonstrate extreme ionospheric response to the large interplanetary electric fields during the "Halloween" storms that occurred on October 29 and 30, 2003. Within a few (2 - 5) hours of the time when the enhanced interplanetary electric field impinged on the magnetopause, dayside total electron content increases of approx.40% and approx.250% are observed for the October 29 and 30 events, respectively. During the Oct 30 event, approx.900% increases in electron content above the CHAMP satellite (approx.400 km altitude) were observed at mid-latitudes (+/-30 degrees geomagnetic). The geomagnetic storm-time phenomenon of prompt penetration electric fields is a possible contributing cause of these electron content increases, producing dayside ionospheric uplift combined with equatorial plasma diffusion along magnetic field lines to higher latitudes, creating a "daytime super-fountain" effect.

437 citations

Journal ArticleDOI
TL;DR: The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health as mentioned in this paper.
Abstract: The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

416 citations

Journal ArticleDOI
Vassilis Angelopoulos1, P. Cruce1, Alexander Drozdov1, Eric Grimes1, N. Hatzigeorgiu2, D. A. King2, Davin Larson2, James W. Lewis2, J. M. McTiernan2, D. A. Roberts3, C. L. Russell1, Tomoaki Hori4, Yoshiya Kasahara5, Atsushi Kumamoto6, Ayako Matsuoka, Yukinaga Miyashita7, Yoshizumi Miyoshi4, I. Shinohara, Mariko Teramoto4, Jeremy Faden, Alexa Halford8, Matthew D. McCarthy9, Robyn Millan10, John Sample11, David M. Smith12, L. A. Woodger10, Arnaud Masson, A. A. Narock3, Kazushi Asamura, T. F. Chang4, C. Y. Chiang13, Yoichi Kazama14, Kunihiro Keika15, S. Matsuda4, Tomonori Segawa4, Kanako Seki15, Masafumi Shoji4, Sunny W. Y. Tam13, Norio Umemura4, B. J. Wang16, B. J. Wang14, Shiang-Yu Wang14, Robert J. Redmon17, Juan V. Rodriguez17, Juan V. Rodriguez18, Howard J. Singer17, Jon Vandegriff19, S. Abe20, Masahito Nose21, Masahito Nose4, Atsuki Shinbori4, Yoshimasa Tanaka22, S. UeNo21, L. Andersson23, P. Dunn2, Christopher M. Fowler23, Jasper Halekas24, Takuya Hara2, Yuki Harada21, Christina O. Lee2, Robert Lillis2, David L. Mitchell2, Matthew R. Argall25, Kenneth R. Bromund3, James L. Burch26, Ian J. Cohen19, Michael Galloy27, Barbara L. Giles3, Allison Jaynes24, O. Le Contel28, Mitsuo Oka2, T. D. Phan2, Brian Walsh29, Joseph Westlake19, Frederick Wilder23, Stuart D. Bale2, Roberto Livi2, Marc Pulupa2, Phyllis Whittlesey2, A. DeWolfe23, Bryan Harter23, E. Lucas23, U. Auster30, John W. Bonnell2, Christopher Cully31, Eric Donovan31, Robert E. Ergun23, Harald U. Frey2, Brian Jackel31, A. Keiling2, Haje Korth19, J. P. McFadden2, Yukitoshi Nishimura29, Ferdinand Plaschke32, P. Robert28, Drew Turner8, James M. Weygand1, Robert M. Candey3, R. C. Johnson3, T. Kovalick3, M. H. Liu3, R. E. McGuire3, Aaron Breneman33, Kris Kersten33, P. Schroeder2 
TL;DR: The SPEDAS development history, goals, and current implementation are reviewed, and its “modes of use” are explained with examples geared for users and its technical implementation and requirements with software developers in mind are outlined.
Abstract: With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform ( www.spedas.org ), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans.

371 citations