scispace - formally typeset
Search or ask a question
Author

Thomas J. Paxton

Bio: Thomas J. Paxton is an academic researcher from Stanford University. The author has contributed to research in topics: Alkyne & Cycloaddition. The author has an hindex of 3, co-authored 4 publications receiving 999 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Improved transporters that can deliver agents in a superior fashion compared with naturally occurring cell-penetrating peptides and that can be synthesized in a practical and step-economical fashion are generated.
Abstract: This Account provides an overview and examples of function-oriented synthesis (FOS) and its increasingly important role in producing therapeutic leads that can be made in a step-economical fashion. Biologically active natural product leads often suffer from several deficiencies. Many are scarce or difficult to obtain from natural sources. Often, they are highly complex molecules and thus not amenable to a practical synthesis that would impact supply. Most are not optimally suitable for human therapeutic use. The central principle of FOS is that the function of a biologically active lead structure can be recapitulated, tuned, or greatly enhanced with simpler scaffolds designed for ease of synthesis and also synthetic innovation. This approach can provide practical access to new (designed) structures with novel activities while at the same time allowing for synthetic innovation by target design. This FOS approach has been applied to a number of therapeutically important natural product leads. For example, b...

929 citations

Journal ArticleDOI
TL;DR: The Rh(I)-catalyzed cycloaddition of cyclopropenones and alkynes is found to provide a highly efficient and regiocontrolled route to cyclopentadienones (CPDs), building blocks of widespread use in the synthesis of natural and non-natural products, therapeutic leads, polymers, dendrimers, devices, and antigen presenting scaffolds.
Abstract: The Rh(I)-catalyzed [3 + 2] cycloaddition of cyclopropenones and alkynes is found to provide a highly efficient and regiocontrolled route to cyclopentadienones (CPDs), building blocks of widespread use in the synthesis of natural and non-natural products, therapeutic leads, polymers, dendrimers, devices, and antigen presenting scaffolds. The versatility of the method is explored with 23 examples representing a wide range of alkyne variations (arylalkyl-, dialkyl-, heteroarylalkyl-) and diaryl- as well as arylalkylcyclopropenones. The reactions often proceed in high yield using minimal catalyst loadings and in all cases examined proceed with high or complete regioselectivity. The reaction is readily scalable to produce gram quantities of cycloadduct and provides a unique and versatile route to CPDs that would be otherwise difficult to obtain.

115 citations

Journal ArticleDOI
TL;DR: Function-Oriented Synthesis (FOS) as mentioned in this paper is an approach to synthesize biologically active natural product leads that can be adapted to new (designed) structures with novel activities while allowing for synthetic innovation by target design.
Abstract: This Account provides an overview and examples of function-oriented synthesis (FOS) and its increasingly important role in producing therapeutic leads that can be made in a step-economical fashion. Biologically active natural product leads often suffer from several deficiencies. Many are scarce or difficult to obtain from natural sources. Often, they are highly complex molecules and thus not amenable to a practical synthesis that would impact supply. Most are not optimally suitable for human therapeutic use. The central principle of FOS is that the function of a biologically active lead structure can be recapitulated, tuned, or greatly enhanced with simpler scaffolds designed for ease of synthesis and also synthetic innovation. This approach can provide practical access to new (designed) structures with novel activities while at the same time allowing for synthetic innovation by target design. This FOS approach has been applied to a number of therapeutically important natural product leads. For example, b...

38 citations

Journal ArticleDOI
TL;DR: In this paper, a cycloaddition of cyclopropenones and alkynes is proposed to provide a highly efficient and regiocontrolled route to cyclopentadienones (CPDs).
Abstract: The Rh(I)-catalyzed [3 + 2] cycloaddition of cyclopropenones and alkynes is found to provide a highly efficient and regiocontrolled route to cyclopentadienones (CPDs), building blocks of widespread use in the synthesis of natural and non-natural products, therapeutic leads, polymers, dendrimers, devices, and antigen presenting scaffolds. The versatility of the method is explored with 23 examples representing a wide range of alkyne variations (arylalkyl-, dialkyl-, heteroarylalkyl-) and diaryl- as well as arylalkylcyclopropenones. The reactions often proceed in high yield using minimal catalyst loadings and in all cases examined proceed with high or complete regioselectivity. The reaction is readily scalable to produce gram quantities of cycloadduct and provides a unique and versatile route to CPDs that would be otherwise difficult to obtain.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The first applications of asymmetric organocatalytic cascade reactions to the total synthesis of natural products are presented, paving the way for a new and powerful strategy that can help to address these issues.
Abstract: The total synthesis of natural products and biologically active compounds, such as pharmaceuticals and agrochemicals, has reached an extraordinary level of sophistication. We are, however, still far away from the 'ideal synthesis' and the state of the art is still frequently hampered by lengthy protecting-group strategies and costly purification procedures derived from the step-by-step protocols. In recent years several new criteria have been brought forward to solve these problems and to improve total synthesis: atom, step and redox economy or protecting-group-free synthesis. Over the past decade the research area of organocatalysis has rapidly grown to become a third pillar of asymmetric catalysis standing next to metal and biocatalysis, thus paving the way for a new and powerful strategy that can help to address these issues - organocatalytic cascade reactions. In this Review we present the first applications of such asymmetric organocascade reactions to the total synthesis of natural products.

1,315 citations

Journal ArticleDOI
TL;DR: In this article, various strategies for the valorisation of waste biomass to platform chemicals, and the underlying developments in chemical and biological catalysis which make this possible, are critically reviewed, and three possible routes for producing a bio-based equivalent of the large volume polymer, polyethylene terephthalate (PET) are delineated.

1,246 citations

Journal ArticleDOI
TL;DR: Based on the principles and metrics of green chemistry and sustainable development, biocatalysis is both a green and sustainable technology and its broader application will be further stimulated in the future by the emerging biobased economy.
Abstract: Based on the principles and metrics of green chemistry and sustainable development, biocatalysis is both a green and sustainable technology. This is largely a result of the spectacular advances in molecular biology and biotechnology achieved in the past two decades. Protein engineering has enabled the optimization of existing enzymes and the invention of entirely new biocatalytic reactions that were previously unknown in Nature. It is now eminently feasible to develop enzymatic transformations to fit predefined parameters, resulting in processes that are truly sustainable by design. This approach has successfully been applied, for example, in the industrial synthesis of active pharmaceutical ingredients. In addition to the use of protein engineering, other aspects of biocatalysis engineering, such as substrate, medium, and reactor engineering, can be utilized to improve the efficiency and cost-effectiveness and, hence, the sustainability of biocatalytic reactions. Furthermore, immobilization of an enzyme ...

1,041 citations

Journal ArticleDOI
TL;DR: A critical consideration of domino, cascade, and tandem catalysis in the case of N-heterocyclic carbenes catalysts is presented and recent publications in this area are highlighted.
Abstract: While organocatalyzed domino reactions or "organocascade catalysis" developed into an important tool in synthetic chemistry during the past decade, the utility of N-heterocyclic carbenes (NHCs) as catalysts in domino reactions has only received growing attention in the past three years. Taking into account the unique activation modes of the substrates by NHC catalysts, it is often difficult to distinguish between a single chemical transformation and a sequential one-pot transformation. Therefore, herein we present a critical consideration of domino, cascade, and tandem catalysis in the case of NHC catalysts and highlight recent publications in this area.

828 citations

Journal ArticleDOI
TL;DR: The optimisation of enzyme properties using in vitro evolution and improvement of their operational stability by immobilisation as cross-linked enzyme aggregates (CLEA) are presented and the biocatalytic aerobic oxidation of starch to carboxy starch is presented as an example of green chemistry in optima forma i.e. a biocompatible product from a renewable raw material using a biocesealytic air oxidation.

737 citations