scispace - formally typeset
Search or ask a question
Author

Thomas Kanitz

Bio: Thomas Kanitz is an academic researcher from European Space Agency. The author has contributed to research in topics: Lidar & Aerosol. The author has an hindex of 15, co-authored 42 publications receiving 934 citations. Previous affiliations of Thomas Kanitz include Leibniz Association & European Space Research and Technology Centre.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study.
Abstract: . The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT.

228 citations

Journal ArticleDOI
TL;DR: PollyNET as mentioned in this paper consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols.
Abstract: . A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/ . The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Angstrom exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

192 citations

Journal ArticleDOI
TL;DR: In this paper, the occurrence of heterogeneous ice formation (as a function of cloud top temperature) for very different aerosol conditions in the northern and southern hemisphere is investigated, and large differences in the heterogeneous freezing behavior in mostly layered clouds are found.
Abstract: [1] Three cloud data sets, each covering four months of observations, were recently recorded with a lidar at Punta Arenas (53°S), Chile, at Stellenbosch (34°S, near Cape Town), South Africa, and aboard the research vessel Polarstern during three north-south cruises. By comparing these observations with an 11–year cloud data set measured with a lidar at Leipzig (51°N), Germany, the occurrence of heterogeneous ice formation (as a function of cloud top temperature) for very different aerosol conditions in the northern and southern hemisphere is investigated. Large differences in the heterogeneous freezing behavior in the mostly layered clouds are found. For example, <20%, 30%–40% and around 70% of the cloud layers with cloud top temperatures from −15°C to −20°C, showed ice formation over Punta Arenas, Stellenbosch, and Leipzig, respectively. The observed strong contrast reflects the differences in the free tropospheric aerosol conditions at northern midlatitudes, that are controlled by anthropogenic pollution, mineral dust, forest fire smoke, terrestrial biological material and high southern midlatitudes with clean marine conditions.

117 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-wavelength aerosol Raman lidar was used to detect volcanic aerosol in the upper troposphere and lower stratosphere of the European Aerosol Research Lidar Network (EARLINET).
Abstract: [1] In the framework of regular European Aerosol Research Lidar Network (EARLINET) observations, aerosol layers have been monitored with a multiwavelength aerosol Raman lidar in the upper troposphere and lower stratosphere over Leipzig (51.4°N, 12.4°E), Germany, since the summer of 2008. The origins of these layers are eruptions of different volcanoes on the Aleutian Islands, Kamchatka, Alaska, and on the Kuril Islands. FLEXPART transport simulations show that the volcanic aerosol is advected from Alaska to central Europe within about 7 days. The aerosol layers typically occurred in the upper troposphere above 5 km height and in the lower stratosphere below 25 km height. The optical depths of the volcanic aerosol layers are mostly between 0.004 and 0.025 at 532 nm. The wavelength dependence of the backscatter coefficients and extinction coefficients indicate Angstrom exponents from 1.0–2.0. Lidar ratios in the stratosphere are found in the range from 30–60 sr (355 nm) and 30–45 sr (532 nm). The estimation of the effective radius, surface-area, and mass concentrations of a volcanic aerosol layer, observed well within the stratosphere at end of August 2009, reveals values of 0.1–0.2 μm, 5–10 μm2 cm−3, and 0.3–0.5 μg m−3, respectively.

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the ice nucleation active surface site (INAS) density is discussed as a simple and empirical normalized measure for ice nucleization activity, and the authors compare the results obtained with different methodologies.
Abstract: . A small subset of the atmospheric aerosol population has the ability to induce ice formation at conditions under which ice would not form without them (heterogeneous ice nucleation). While no closed theoretical description of this process and the requirements for good ice nuclei is available, numerous studies have attempted to quantify the ice nucleation ability of different particles empirically in laboratory experiments. In this article, an overview of these results is provided. Ice nucleation "onset" conditions for various mineral dust, soot, biological, organic and ammonium sulfate particles are summarized. Typical temperature-supersaturation regions can be identified for the "onset" of ice nucleation of these different particle types, but the various particle sizes and activated fractions reported in different studies have to be taken into account when comparing results obtained with different methodologies. When intercomparing only data obtained under the same conditions, it is found that dust mineralogy is not a consistent predictor of higher or lower ice nucleation ability. However, the broad majority of studies agrees on a reduction of deposition nucleation by various coatings on mineral dust. The ice nucleation active surface site (INAS) density is discussed as a simple and empirical normalized measure for ice nucleation activity. For most immersion and condensation freezing measurements on mineral dust, estimates of the temperature-dependent INAS density agree within about two orders of magnitude. For deposition nucleation on dust, the spread is significantly larger, but a general trend of increasing INAS densities with increasing supersaturation is found. For soot, the presently available results are divergent. Estimated average INAS densities are high for ice-nucleation active bacteria at high subzero temperatures. At the same time, it is shown that INAS densities of some other biological aerosols, like certain pollen grains, fungal spores and diatoms, tend to be similar to those of dust. These particles may owe their high ice nucleation onsets to their large sizes. Surface-area-dependent parameterizations of heterogeneous ice nucleation are discussed. For immersion freezing on mineral dust, fitted INAS densities are available, but should not be used outside the temperature interval of the data they were based on. Classical nucleation theory, if employed with only one fitted contact angle, does not reproduce the observed temperature dependence for immersion nucleation, the temperature and supersaturation dependence for deposition nucleation, and the time dependence of ice nucleation. Formulations of classical nucleation theory with distributions of contact angles offer possibilities to overcome these weaknesses.

946 citations

Journal ArticleDOI
TL;DR: Aerosol species which have been identified in the past as potentially important ice nuclei are introduced and their ice-nucleating ability when immersed in a supercooled droplet is addressed and the importance of ice nucleation by different aerosol types is estimated.
Abstract: The formation of ice particles in the Earth's atmosphere strongly affects the properties of clouds and their impact on climate. Despite the importance of ice formation in determining the properties of clouds, the Intergovernmental Panel on Climate Change (IPCC, 2007) was unable to assess the impact of atmospheric ice formation in their most recent report because our basic knowledge is insufficient. Part of the problem is the paucity of quantitative information on the ability of various atmospheric aerosol species to initiate ice formation. Here we review and assess the existing quantitative knowledge of ice nucleation by particles immersed within supercooled water droplets. We introduce aerosol species which have been identified in the past as potentially important ice nuclei and address their ice-nucleating ability when immersed in a supercooled droplet. We focus on mineral dusts, biological species (pollen, bacteria, fungal spores and plankton), carbonaceous combustion products and volcanic ash. In order to make a quantitative comparison we first introduce several ways of describing ice nucleation and then summarise the existing information according to the time-independent (singular) approximation. Using this approximation in combination with typical atmospheric loadings, we estimate the importance of ice nucleation by different aerosol types. According to these estimates we find that ice nucleation below about −15 °C is dominated by soot and mineral dusts. Above this temperature the only materials known to nucleate ice are biological, with quantitative data for other materials absent from the literature. We conclude with a summary of the challenges our community faces.

943 citations

Journal ArticleDOI
20 Jun 2013-Nature
TL;DR: The results from a global aerosol model study suggest that feldspar ice nuclei are globally distributed and that fellspar particles may account for a large proportion of the iceuclei in Earth’s atmosphere that contribute to freezing at temperatures below about −15 °C.
Abstract: The amount of ice present in mixed-phase clouds, which contain both supercooled liquid water droplets and ice particles, affects cloud extent, lifetime, particle size and radiative properties. The freezing of cloud droplets can be catalysed by the presence of aerosol particles known as ice nuclei. One of the most important ice nuclei is thought to be mineral dust aerosol from arid regions. It is generally assumed that clay minerals, which contribute approximately two-thirds of the dust mass, dominate ice nucleation by mineral dust, and many experimental studies have therefore focused on these materials. Here we use an established droplet-freezing technique to show that feldspar minerals dominate ice nucleation by mineral dusts under mixed-phase cloud conditions, despite feldspar being a minor component of dust emitted from arid regions. We also find that clay minerals are relatively unimportant ice nuclei. Our results from a global aerosol model study suggest that feldspar ice nuclei are globally distributed and that feldspar particles may account for a large proportion of the ice nuclei in Earth's atmosphere that contribute to freezing at temperatures below about -15 °C.

591 citations

Journal ArticleDOI
TL;DR: The EarthCARE satellite mission as discussed by the authors provides global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by collocated active and passive sensors.
Abstract: The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint ESA-JAXA EarthCARE satellite mission, scheduled for launch in 2017, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, CALIPSO, and Aqua. Specifically, EarthCARE's Cloud Profling Radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle and raindrop fall speeds. EarthCARE's 355-nm High Spectral Resolution Lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The Multi-Spectral Imager will provide a context for, and the ability to construct the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross-section. The consistency of the retrievals will be assessed to within a target of ±10 W m−2 on the (10 km2) scale by comparing the multi-view Broad-Band Radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.

421 citations

Journal ArticleDOI
TL;DR: The European Aerosol Research Lidar Network (EARLINET) as mentioned in this paper was founded as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo-ral distribution of aerosols on a continental scale.
Abstract: The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and tempo- ral distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive col- lection of ground-based data for the aerosol vertical distribu- tion over Europe. This paper gives an overview of the network's main de- velopments since 2000 and introduces the dedicated EAR- LINET special issue, which reports on the present innova- tive and comprehensive technical solutions and scientific re- sults related to the use of advanced lidar remote sensing tech- niques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 sta- tions in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multi- wavelength Raman lidar stations in Europe. The develop- ments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the net- work towards a more sustainable observing system, with an increase in the observing capability and a reduction of oper- ational costs. Consequently, EARLINET data have already been ex- tensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from vol- canic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the modeling and satellite commu- nity, linking the research community with the operational world, with the aim of establishing of the atmospheric part of the European component of the integrated global observ- ing system.

417 citations