scispace - formally typeset
Search or ask a question
Author

Thomas Kiefhaber

Bio: Thomas Kiefhaber is an academic researcher from University of Basel. The author has contributed to research in topics: Protein folding & Folding (chemistry). The author has an hindex of 42, co-authored 68 publications receiving 7036 citations. Previous affiliations of Thomas Kiefhaber include University of Bayreuth & Technische Universität München.


Papers
More filters
Journal ArticleDOI
02 Feb 1989-Nature
TL;DR: The results indicate that this enzyme is probably identical to cyclophilin, a recently discovered mammalian protein which binds tightly to cyclosporin A (CsA), which is thought to be linked to the immunosuppressive action of CsA.
Abstract: The enzyme peptidyl-prolyl cis-trans isomerase (PPIase) was recently discovered in mammalian tissues and purified from porcine kidney. It catalyses the slow cis-trans isomerization of proline peptide (Xaa-Pro) bonds in oligopeptides and accelerates slow, rate-limiting steps in the folding of several proteins. Here, we report the N-terminal sequence of PPIase together with further chemical and enzymatic properties. The results indicate that this enzyme is probably identical to cyclophilin, a recently discovered mammalian protein which binds tightly to cyclosporin A (CsA). Cyclophilin is thought to be linked to the immunosuppressive action of CsA. The first 38 amino-acid residues of porcine PPIase and of bovine cyclophilin are identical and the two proteins both have a relative molecular mass of about 17,000 (ref. 7). The catalysis of prolyl isomerization in oligopeptides and of protein folding by PPIase are strongly inhibited in the presence of low levels of CsA. The activities of both PPIase and cyclophilin depend on a single sulphydryl group. At present it is unknown whether the inhibition of prolyl isomerase activity is related with the immunosuppressive action of CsA.

1,310 citations

Journal ArticleDOI
TL;DR: The molecular chaperone GroE facilitates correct protein folding in vivo and in vitro, and inhibits aggregation reactions that compete with correctprotein folding, as indicated by specific suppression of light scattering.
Abstract: The molecular chaperone GroE facilitates correct protein folding in vivo and in vitro. The mode of action of GroE was investigated by using refolding of citrate synthase as a model system. In vitro denaturation of this dimeric protein is almost irreversible, since the refolding polypeptide chains aggregate rapidly, as shown directly by a strong, concentration-dependent increase in light scattering. The yields of reactivated citrate synthase were strongly increased upon addition of GroE and MgATP. GroE inhibits aggregation reactions that compete with correct protein folding, as indicated by specific suppression of light scattering. GroEL rapidly forms a complex with unfolded or partially folded citrate synthase molecules. In this complex the refolding protein is protected from aggregation. Addition of GroES and ATP hydrolysis is required to release the polypeptide chain bound to GroEL and to allow further folding to its final, active state.

470 citations

Journal ArticleDOI
TL;DR: The determination of triplet-triplet energy-transfer rates between a donor and an acceptor chromophore attached at defined points on a polypeptide chain sets an upper limit for the speed of formation of the first side-chain contacts during protein folding.
Abstract: A direct measure of intramolecular chain diffusion is obtained by the determination of triplet–triplet energy-transfer rates between a donor and an acceptor chromophore attached at defined points on a polypeptide chain. Single exponential kinetics of contact formation are observed on the nanosecond time scale for polypeptides in which donor and acceptor are linked by repeating units of glycine and serine residues. The rates depend on the number of peptide bonds (N) separating donor and acceptor and show a maximum for the shortest peptides (N = 3) with a time constant (τ = 1/k) of 20 ns. This sets an upper limit for the speed of formation of the first side-chain contacts during protein folding.

356 citations

Journal ArticleDOI
TL;DR: The results suggest that formation of the native state for the major fraction of lysozyme molecules is retarded compared with the direct folding process, and partially structured intermediates that transiently populate seem to be kinetically trapped in a conformation that can only slowly reach the native structure.
Abstract: Folding of lysozyme from hen egg white was investigated by using interrupted refolding experiments. This method makes use of a high energy barrier between the native state and transient folding intermediates, and, in contrast to conventional optical techniques, it enables one to specifically monitor the amount of native molecules during protein folding. The results show that under strongly native conditions lysozyme can refold on parallel pathways. The major part of the lysozyme molecules (86%) refold on a slow kinetic pathway with well-populated partially folded states. Additionally, 14% of the molecules fold faster. The rate constant of formation of native molecules on the fast pathway corresponds well to the rate constant expected for folding to occur by a two-state process without any detectable intermediates. The results suggest that formation of the native state for the major fraction of lysozyme molecules is retarded compared with the direct folding process. Partially structured intermediates that transiently populate seem to be kinetically trapped in a conformation that can only slowly reach the native structure.

292 citations

BookDOI
20 Jan 2005
TL;DR: Methods to study aggregate formation, analysis of protein folding kinetics, kinetic mechanisms, transition states, and molecular dynamics simulations of folding and unfolding.
Abstract: PART I: Principles of Protein Folding and Stability. Spectroscopic techniques to study protein folding and stability. Solvent effects on protein stability. Analysis of protein folding kinetics, kinetic mechanisms, transition states. Single molecule protein folding. Dynamics of unfolded polypeptide chains. Folding and stability of oligomeric proteins. Folding of membrane proteins. Molecular dynamics simulations of folding and unfolding. Ab initio methods for protein structure prediction. PART II: Protein Misfolding, Molecular Chaperones and Folding Catalysts. Methods to study aggregate formation. Amyloid diseases. Polyglutamine repeat diseases. Protein refolding technology. Engineering protein stability. Chaperone machines. Folding of nascent polypeptides. Protein assembly processes.

289 citations


Cited by
More filters
Journal ArticleDOI
18 Dec 2003-Nature
TL;DR: The manner in which a newly synthesized chain of amino acids transforms itself into a perfectly folded protein depends both on the intrinsic properties of the amino-acid sequence and on multiple contributing influences from the crowded cellular milieu.
Abstract: The manner in which a newly synthesized chain of amino acids transforms itself into a perfectly folded protein depends both on the intrinsic properties of the amino-acid sequence and on multiple contributing influences from the crowded cellular milieu. Folding and unfolding are crucial ways of regulating biological activity and targeting proteins to different cellular locations. Aggregation of misfolded proteins that escape the cellular quality-control mechanisms is a common feature of a wide range of highly debilitating and increasingly prevalent diseases.

4,440 citations

Journal ArticleDOI
02 Jan 1992-Nature
TL;DR: Folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.
Abstract: In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.

4,181 citations

Journal ArticleDOI
23 Aug 1991-Cell
TL;DR: The results suggest that calcineurin is involved in a common step associated with T cell receptor and IgE receptor signaling pathways and that cyclophilin and FKBP mediate the actions of CsA and Fk506 by forming drug-dependent complexes with and altering the activity of calcineURin-calmodulin.

3,968 citations

Journal ArticleDOI
TL;DR: This review summarizes the development in the field since the previous review and begins to understand how this bilayer of the outer membrane can retard the entry of lipophilic compounds, owing to increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopoly Saccharide structure is modified by environmental conditions.
Abstract: Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.

3,585 citations

Journal ArticleDOI
TL;DR: The mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, and all of the known ROS-producing sites and their relevance to the mitochondrial ROS production in vivo are discussed.
Abstract: Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.

2,893 citations