scispace - formally typeset
Search or ask a question
Author

Thomas Kjærgaard

Bio: Thomas Kjærgaard is an academic researcher from Aarhus University Hospital. The author has contributed to research in topics: Coupled cluster & Møller–Plesset perturbation theory. The author has an hindex of 23, co-authored 52 publications receiving 2379 citations. Previous affiliations of Thomas Kjærgaard include University of Oslo & Aarhus University.


Papers
More filters
Journal ArticleDOI
Kestutis Aidas1, Celestino Angeli2, Keld L. Bak3, Vebjørn Bakken4, Radovan Bast5, Linus Boman6, Ove Christiansen3, Renzo Cimiraglia2, Sonja Coriani7, Pål Dahle8, Erik K. Dalskov, Ulf Ekström4, Thomas Enevoldsen9, Janus J. Eriksen3, Patrick Ettenhuber3, Berta Fernández10, Lara Ferrighi, Heike Fliegl4, Luca Frediani, Kasper Hald11, Asger Halkier, Christof Hättig12, Hanne Heiberg13, Trygve Helgaker4, Alf C. Hennum14, Hinne Hettema15, Eirik Hjertenæs16, Stine Høst3, Ida-Marie Høyvik3, Maria Francesca Iozzi17, Brannislav Jansik18, Hans-Jørgen Aa. Jensen9, Dan Jonsson, Poul Jørgensen3, Johanna Kauczor19, Sheela Kirpekar, Thomas Kjærgaard3, Wim Klopper20, Stefan Knecht21, Rika Kobayashi22, Henrik Koch16, Jacob Kongsted9, Andreas Krapp, Kasper Kristensen3, Andrea Ligabue23, Ola B. Lutnæs24, Juan Ignacio Melo25, Kurt V. Mikkelsen26, Rolf H. Myhre16, Christian Neiss27, Christian B. Nielsen, Patrick Norman19, Jeppe Olsen3, Jógvan Magnus Haugaard Olsen9, Anders Osted, Martin J. Packer9, Filip Pawłowski28, Thomas Bondo Pedersen4, Patricio Federico Provasi29, Simen Reine4, Zilvinas Rinkevicius5, Torgeir A. Ruden, Kenneth Ruud, Vladimir V. Rybkin20, Paweł Sałek, Claire C. M. Samson20, Alfredo Sánchez de Merás30, Trond Saue31, Stephan P. A. Sauer26, Bernd Schimmelpfennig20, Kristian Sneskov11, Arnfinn Hykkerud Steindal, Kristian O. Sylvester-Hvid, Peter R. Taylor32, Andrew M. Teale33, Erik I. Tellgren4, David P. Tew34, Andreas J. Thorvaldsen3, Lea Thøgersen35, Olav Vahtras5, Mark A. Watson36, David J. D. Wilson37, Marcin Ziółkowski38, Hans Ågren5 
TL;DR: Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory.
Abstract: Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

1,212 citations

Journal ArticleDOI
TL;DR: The determination of the orbital spaces for the small orbital fragments is black box in the sense that it does not depend on any user-provided molecular fragmentation, rather orbital spaces are carefully selected and extended during the calculation to give fragment energies of a specified precision.
Abstract: Coupled cluster calculations can be carried out for large molecular systems via a set of calculations that use small orbital fragments of the full molecular orbital space. The error in the correlation energy of the full molecular system is controlled by the precision in the small fragment calculations. The determination of the orbital spaces for the small orbital fragments is black box in the sense that it does not depend on any user—provided molecular fragmentation, rather orbital spaces are carefully selected and extended during the calculation to give fragment energies of a specified precision. The computational method scales linearly with the size of the molecular system and is massively parallel.

158 citations

Journal ArticleDOI
TL;DR: The locality analysis shows that a CC calculation on a large molecular system may be carried out in terms of CC calculations on small orbital fragments of the total molecular system, where the sizes of the orbital fragment spaces are determined in a black box manner to ensure that the CC correlation energy is calculated to a preset energy threshold.
Abstract: We present a thorough locality analysis of the divide-expand-consolidate amplitude equations for second-order Moller-Plesset perturbation theory and the coupled cluster singles doubles (CCSD) model, which demonstrates that the amplitude equations are local when expressed in terms of a set of local occupied and local unoccupied Hartree-Fock orbitals, such as the least-change molecular basis. The locality analysis thus shows that a CC calculation on a large molecular system may be carried out in terms of CC calculations on small orbital fragments of the total molecular system, where the sizes of the orbital fragment spaces are determined in a black box manner to ensure that the CC correlation energy is calculated to a preset energy threshold. A practical implementation of the locality analysis is described, and numerical results are presented, which demonstrate that both the orbital fragment sizes and the relative energy error compared to a full CC calculation are independent of the molecular system size.

95 citations

Journal ArticleDOI
TL;DR: This paper presents a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling.
Abstract: Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree–Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.

83 citations

Journal ArticleDOI
TL;DR: The relationship between subjective nasal obstruction and the corresponding anatomic and physiological nasal parameters using acoustic rhinometry (AR) and peak nasal inspiratory flow (PNIF) is evaluated.
Abstract: Objectives/Hypothesis: It is still a matter of controversy to what extent the sense of nasal obstruction is associated with objective measures for nasal space and airflow. Knowledge about this is important in the evaluation of nasal complaints and the planning of its treatment. In this study, we evaluated the relationship between subjective nasal obstruction and the corresponding anatomic and physiological nasal parameters using acoustic rhinometry (AR) and peak nasal inspiratory flow (PNIF). Study Design: Two thousand five hundred twenty-three consecutive patients were included in this cross-sectional study. Eligible subjects were adults referred to the Ear, Nose, and Throat Department, Sorlandet Hospital, Kristiansand, Norway, for evaluation of chronic nasal or sleep related complaints. Methods: Subjects underwent AR and nasal flow measurements. Subjective grading of nasal obstruction was obtained by a nasal obstruction visual analogue scale. Associations between nasal obstruction visual analogue scale scores, AR, and PNIF were assessed using multiple linear regression, adjusting for age, gender, body mass index, and asthma, allergy, and smoking history. Results: The sense of nasal obstruction was associated with nasal cavity volumes in both anterior and middle segments of the nasal cavities, with minimal cross-sectional areas in middle segments and for the nasal cavity as a whole, and with PNIF. Associations with minimal cross-sectional areas in anterior segments did not reach significance. Conclusions: The present study demonstrates highly significant associations between the subjective sensation of nasal obstruction and corresponding measures for nasal cavity volume, area, and airflow. We conclude that AR and PNIF are valuable objective instruments for evaluation of subjective nasal obstruction.

79 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
Kestutis Aidas1, Celestino Angeli2, Keld L. Bak3, Vebjørn Bakken4, Radovan Bast5, Linus Boman6, Ove Christiansen3, Renzo Cimiraglia2, Sonja Coriani7, Pål Dahle8, Erik K. Dalskov, Ulf Ekström4, Thomas Enevoldsen9, Janus J. Eriksen3, Patrick Ettenhuber3, Berta Fernández10, Lara Ferrighi, Heike Fliegl4, Luca Frediani, Kasper Hald11, Asger Halkier, Christof Hättig12, Hanne Heiberg13, Trygve Helgaker4, Alf C. Hennum14, Hinne Hettema15, Eirik Hjertenæs16, Stine Høst3, Ida-Marie Høyvik3, Maria Francesca Iozzi17, Brannislav Jansik18, Hans-Jørgen Aa. Jensen9, Dan Jonsson, Poul Jørgensen3, Johanna Kauczor19, Sheela Kirpekar, Thomas Kjærgaard3, Wim Klopper20, Stefan Knecht21, Rika Kobayashi22, Henrik Koch16, Jacob Kongsted9, Andreas Krapp, Kasper Kristensen3, Andrea Ligabue23, Ola B. Lutnæs24, Juan Ignacio Melo25, Kurt V. Mikkelsen26, Rolf H. Myhre16, Christian Neiss27, Christian B. Nielsen, Patrick Norman19, Jeppe Olsen3, Jógvan Magnus Haugaard Olsen9, Anders Osted, Martin J. Packer9, Filip Pawłowski28, Thomas Bondo Pedersen4, Patricio Federico Provasi29, Simen Reine4, Zilvinas Rinkevicius5, Torgeir A. Ruden, Kenneth Ruud, Vladimir V. Rybkin20, Paweł Sałek, Claire C. M. Samson20, Alfredo Sánchez de Merás30, Trond Saue31, Stephan P. A. Sauer26, Bernd Schimmelpfennig20, Kristian Sneskov11, Arnfinn Hykkerud Steindal, Kristian O. Sylvester-Hvid, Peter R. Taylor32, Andrew M. Teale33, Erik I. Tellgren4, David P. Tew34, Andreas J. Thorvaldsen3, Lea Thøgersen35, Olav Vahtras5, Mark A. Watson36, David J. D. Wilson37, Marcin Ziółkowski38, Hans Ågren5 
TL;DR: Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory.
Abstract: Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

1,212 citations

Journal ArticleDOI
TL;DR: This Review describes the recent developments (including some historical aspects) of dispersion corrections with an emphasis on methods that can be employed routinely with reasonable accuracy in large-scale applications.
Abstract: Mean-field electronic structure methods like Hartree–Fock, semilocal density functional approximations, or semiempirical molecular orbital (MO) theories do not account for long-range electron correlation (London dispersion interaction). Inclusion of these effects is mandatory for realistic calculations on large or condensed chemical systems and for various intramolecular phenomena (thermochemistry). This Review describes the recent developments (including some historical aspects) of dispersion corrections with an emphasis on methods that can be employed routinely with reasonable accuracy in large-scale applications. The most prominent correction schemes are classified into three groups: (i) nonlocal, density-based functionals, (ii) semiclassical C6-based, and (iii) one-electron effective potentials. The properties as well as pros and cons of these methods are critically discussed, and typical examples and benchmarks on molecular complexes and crystals are provided. Although there are some areas for furthe...

932 citations

Journal ArticleDOI
TL;DR: The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems, and the performance gains and memory savings are substantially larger.
Abstract: Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate previous implementation.

682 citations

Journal ArticleDOI
TL;DR: Near-infrared-emissive polymer-carbon nanodots possess two-photon fluorescence; in vivo bioimaging and red-light-emitting diodes based on these PCNDs are demonstrated.
Abstract: Near-infrared-emissive polymer-carbon nanodots (PCNDs) are fabricated by a newly developed facile, high-output strategy. The PCNDs emit at a wavelength of 710 nm with a quantum yield of 26.28%, which is promising for deep biological imaging and luminescent devices. Moreover, the PCNDs possess two-photon fluorescence; in vivo bioimaging and red-light-emitting diodes based on these PCNDs are demonstrated.

620 citations