scispace - formally typeset
Search or ask a question
Author

Thomas L. Daniel

Bio: Thomas L. Daniel is an academic researcher from University of Washington. The author has contributed to research in topics: Wing & Sarcomere. The author has an hindex of 47, co-authored 114 publications receiving 6733 citations. Previous affiliations of Thomas L. Daniel include Duke University & University of Wisconsin-Madison.
Topics: Wing, Sarcomere, Halteres, Myofilament, Insect flight


Papers
More filters
Journal ArticleDOI
TL;DR: This study addresses the relationship between venation pattern and wing flexibility by measuring the flexural stiffness of wings (in both the spanwise and chordwise directions) and quantifying wing venation in 16 insect species from six orders and demonstrates that leading edge veins are crucial in generating this spanwise-chordwise anisotropy.
Abstract: During flight, many insect wings undergo dramatic deformations that are controlled largely by the architecture of the wing. The pattern of supporting veins in wings varies widely among insect orders and families, but the functional significance of phylogenetic trends in wing venation remains unknown, and measurements of the mechanical properties of wings are rare. In this study, we address the relationship between venation pattern and wing flexibility by measuring the flexural stiffness of wings (in both the spanwise and chordwise directions) and quantifying wing venation in 16 insect species from six orders. These measurements show that spanwise flexural stiffness scales strongly with the cube of wing span, whereas chordwise flexural stiffness scales with the square of chord length. Wing size accounts for over 95% of the variability in measured flexural stiffness; the residuals of this relationship are small and uncorrelated with standardized independent contrasts of wing venation characters. In all species tested, spanwise flexural stiffness is 1-2 orders of magnitude larger than chordwise flexural stiffness. A finite element model of an insect wing demonstrates that leading edge veins are crucial in generating this spanwise-chordwise anisotropy.

535 citations

Journal ArticleDOI
TL;DR: Mechanisms that incorporate the allometry of drag and strength accurately predict the maximal size of intertidal algae but not of animals, and internally imposed inertial forces may explain the limits to size in large kelps.
Abstract: Plants and animals that inhabit the intertidal zone of wave—swept shores are generally small relative to terrestrial or subtidal organisms. Various biological mechanisms have been proposed to account for this observation (competition, size—specific predation, food—limitation, etc.). However, these biological mechanisms are constrained to operate within the mechanical limitations imposed by the physical environment, and these limitations have never been thoroughly explored. We investigated the possibility that the observed limits to size in wave—swept organisms are due solely or in part to mechanical, rather than biological, factors. The total force imposed on an organism by breaking waves and postbreaking flows is due to both the water's velocity and its acceleration. The force due to velocity (a combined effect of drag and lift) increases in strict proportion to the organism's structural strength as the organism increases in size, and therefore cannot act as a mechanical limit to size. In contrast, the force due to the water's acceleration increases faster than the organism's structural strength as the organism grows, and thus constitutes a potential mechanical limit to its size. We incorporated this fact into a model that predicts the probability that an organism will be destroyed (by breakage or dislodgement) as a function of five parameters that can be measured empirically: (1) the organism's size, (2) the organism's structural strength, (3) the maximum water acceleration in each wave, (4) the maximum water velocity at the time of maximum acceleration in each wave, and (5) the probability of encountering waves with given flow parameters. The model was tested using a variety of organisms. For each, parameters 1—4 were measured or calculated; the probability of destruction, and the size—specific increment in this probability, were then predicted. For the limpets Collisella pelta and Notoacmaea scutum, the urchin Strongylocentrotus purpuratus, the mussel Mytilus californianus (when solitary), and the hydrocoral Millepora complanata, both the probability of destruction and the size—specific increase in the risk of destruction were determined to be substantial. It is conjectured that the size of individuals of these species may be limited as a result of mechanical factors, though the case of M. complanata is complicated by the possibility that breakage may act as a dispersal mechanism. In other cases (the snails Thais canaliculata, T. emarginata, and Littorina scutulata; the barnacle Semibalanus cariosus), the size—specific increment in the risk of destruction is small and the size limits imposed on these organisms are conjectured to be due to biological factors. Our model also provides an approach to examining many potential effects of environmental stress caused by flowing water. For example, these methods may be applied to studies of: (1) life—history parameters (e.g., size at first reproduction, age at first reproduction, timing of reproductive cycles, length of possible reproductive lifetime), (2) the effects of gregarious settlement on the flow encountered, (3) the physical basis for patterns of disturbance, (4) the optimum (as opposed to the maximum) size of organisms, and (5) the energetic cost of maintaining a skeleton with an appropriate safety factor. A definitive answer regarding the possibility of mechanical limits to size depends both upon an accurate measurement of the probability of encountering a wave of specific flow parameters and upon factors that are external to the model considered (e.g., life—history parameters). Further, due to their ability to move with the flow, organisms that are sufficiently flexible can escape the size limits imposed on more rigid organisms. Thus, some macroalgae attain large sizes (2—3 m in maximum dimension). The precise role of these factors awaits further research.

464 citations

Journal ArticleDOI
TL;DR: Finite element models based on M. sexta forewings demonstrate that the measured spatial variation in flexural stiffness preserves rigidity in proximal regions of the wing, while transferring bending to the edges, where aerodynamic force production is most sensitive to subtle changes in shape.
Abstract: The dynamic, three-dimensional shape of flapping insect wings may influence many aspects of flight performance. Insect wing deformations during flight are largely passive, and are controlled primarily by the architecture and material properties of the wing. Although many details of wing structure are well understood, the distribution of flexural stiffness in insect wings and its effects on wing bending are unknown. In this study, we developed a method of estimating spatial variation in flexural stiffness in both the spanwise and chordwise direction of insect wings. We measured displacement along the wing in response to a point force, and modeled flexural stiffness variation as a simple mathematical function capable of approximating this measured displacement. We used this method to estimate flexural stiffness variation in the hawkmoth Manduca sexta, and the dragonfly Aeshna multicolor. In both species, flexural stiffness declines sharply from the wing base to the tip, and from the leading edge to the trailing edge; this variation can be approximated by an exponential decline. The wings of M. sexta also display dorsal/ventral asymmetry in flexural stiffness and significant differences between males and females. Finite element models based on M. sexta forewings demonstrate that the measured spatial variation in flexural stiffness preserves rigidity in proximal regions of the wing, while transferring bending to the edges, where aerodynamic force production is most sensitive to subtle changes in shape.

419 citations

Journal ArticleDOI
TL;DR: A simplified finite element model of a wing is used to show that the differences observed between wings flapped in air versus helium are most likely due to fluid damping, rather than to aerodynamic forces, suggesting that damped finite element models of insect wings may be able to predict overall patterns of wing deformation prior to calculations of aerodynamic force production.
Abstract: During flapping flight, insect wings must withstand not only fluid-dynamic forces, but also inertial-elastic forces generated by the rapid acceleration and deceleration of their own mass. Estimates of overall aerodynamic and inertial forces vary widely, and the relative importance of these forces in determining passive wing deformations remains unknown. If aeroelastic interactions between a wing and the fluid-dynamic forces it generates are minor compared to the effects of wing inertia, models of insect flight that account for passive wing flexibility would be far simpler to develop. We used an experimental approach to examine the contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. We attached fresh Manduca wings to a motor and flapped them at a realistic wing-beat frequency and stroke amplitude. We compared wing bending in normal air versus helium (approx. 15% air density), in which the contribution of fluid-dynamic forces to wing deformations is significantly reduced. This 85% reduction in air density produced only slight changes in the pattern of Manduca wing deformations, suggesting that fluid-dynamic forces have a minimal effect on wing bending. We used a simplified finite element model of a wing to show that the differences observed between wings flapped in air versus helium are most likely due to fluid damping, rather than to aerodynamic forces. This suggests that damped finite element models of insect wings (with no fluid-dynamic forces included) may be able to predict overall patterns of wing deformation prior to calculations of aerodynamic force production, facilitating integrative models of insect flight.

308 citations

Journal ArticleDOI
Thomas L. Daniel1
TL;DR: The acceleration reaction dominates the forces resisting rapid accelerations of animals and may be responsible for generating thrust in oscillating appendages and undulating bodies.
Abstract: Virtually all animals swim unsteadily. They oscillate appendages, undulate, and produce periodic propulsive forces so that the velocity of some part of their bodies changes in time. Because of their unsteady motion, animals experience a fluid force in addition to drag—the acceleration reaction. The acceleration reaction dominates the forces resisting rapid accelerations of animals and may be responsible for generating thrust in oscillating appendages and undulating bodies. The ever-present unsteady nature of animal swimming implies diverse applications of the acceleration reaction.

282 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Jul 2004-Ecology
TL;DR: This work has developed a quantitative theory for how metabolic rate varies with body size and temperature, and predicts how metabolic theory predicts how this rate controls ecological processes at all levels of organization from individuals to the biosphere.
Abstract: Metabolism provides a basis for using first principles of physics, chemistry, and biology to link the biology of individual organisms to the ecology of populations, communities, and ecosystems. Metabolic rate, the rate at which organisms take up, transform, and expend energy and materials, is the most fundamental biological rate. We have developed a quantitative theory for how metabolic rate varies with body size and temperature. Metabolic theory predicts how metabolic rate, by setting the rates of resource uptake from the environment and resource allocation to survival, growth, and reproduction, controls ecological processes at all levels of organization from individuals to the biosphere. Examples include: (1) life history attributes, including devel- opment rate, mortality rate, age at maturity, life span, and population growth rate; (2) population interactions, including carrying capacity, rates of competition and predation, and patterns of species diversity; and (3) ecosystem processes, including rates of biomass production and respiration and patterns of trophic dynamics. Data compiled from the ecological literature strongly support the theoretical predictions. Even- tually, metabolic theory may provide a conceptual foundation for much of ecology, just as genetic theory provides a foundation for much of evolutionary biology.

6,017 citations

30 Apr 1984
TL;DR: A review of the literature on optimal foraging can be found in this article, with a focus on the theoretical developments and the data that permit tests of the predictions, and the authors conclude that the simple models so far formulated are supported by available data and that they are optimistic about the value both now and in the future.
Abstract: Beginning with Emlen (1966) and MacArthur and Pianka (1966) and extending through the last ten years, several authors have sought to predict the foraging behavior of animals by means of mathematical models. These models are very similar,in that they all assume that the fitness of a foraging animal is a function of the efficiency of foraging measured in terms of some "currency" (Schoener, 1971) -usually energy- and that natural selection has resulted in animals that forage so as to maximize this fitness. As a result of these similarities, the models have become known as "optimal foraging models"; and the theory that embodies them, "optimal foraging theory." The situations to which optimal foraging theory has been applied, with the exception of a few recent studies, can be divided into the following four categories: (1) choice by an animal of which food types to eat (i.e., optimal diet); (2) choice of which patch type to feed in (i.e., optimal patch choice); (3) optimal allocation of time to different patches; and (4) optimal patterns and speed of movements. In this review we discuss each of these categories separately, dealing with both the theoretical developments and the data that permit tests of the predictions. The review is selective in the sense that we emphasize studies that either develop testable predictions or that attempt to test predictions in a precise quantitative manner. We also discuss what we see to be some of the future developments in the area of optimal foraging theory and how this theory can be related to other areas of biology. Our general conclusion is that the simple models so far formulated are supported are supported reasonably well by available data and that we are optimistic about the value both now and in the future of optimal foraging theory. We argue, however, that these simple models will requre much modification, espicially to deal with situations that either cannot easily be put into one or another of the above four categories or entail currencies more complicated that just energy.

2,709 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: For many communities, a self-reproducing climax state may only exist as an average condition on a relatively large spatial scale, and even that has yet to be rigorously demonstrated.
Abstract: Two features characterize all natural communities. First, they are dynamic systems. The densities and age-structures of populations change with time, as do the relative abundances of species; local extinctions are commonplace (37). For many communities, a self-reproducing climax state may only exist as an average condition on a relatively large spatial scale, and even that has yet to be rigorously demonstrated (36). The idea that equilibrium is rarely achieved on the local scale was expressed decades ago by a number of forest ecologists (e.g. 10 1, 168). One might even argue that continued application of the concept of climax to natural systems is simply an exercise in metaphysics (41). While this view may seem extreme, major climatic shifts often recur at time intervals shorter than that required for a community to reach competitive equilibrium or alter the geographical distributions of species (6, 21, 43, 76, 92). Climatic variation of this kind influences ecological patterns over large areas, sometimes encompassing entire continents. Other agents of temporal change in natural communities operate over a wide range of smaller spatial scales (47, 242). Second, natural communities are spatially heterogeneous. This statement is true at any scale of resolution (242), but it is especially apparent on what is commonly referred to as the regional scale. (By region I mean an area that potentially encompasses more than one colonizable patch.) Across any land or seascape, one observes a mosaic of patches identified by spatial discontinuities in the distributions of populations (153, 159, 161, 231, 239, 240). Closer examination often reveals a smaller-scale patchwork of same-aged individuals (e.g. 85-87, 101, 146, 199,204,217-220,235,246). Discrete patch boundaries sometimes reflect species-specific responses to

2,312 citations