scispace - formally typeset
Search or ask a question

Showing papers by "Thomas L. Marzetta published in 2021"


Posted Content
TL;DR: It is shown that wave propagation through a three-dimensional scattered medium can be generally modeled as a linear and space-variant system as well as a general spatially-stationary random field.
Abstract: The majority of stochastic channel models rely on the electromagnetic far-field assumption. This assumption breaks down in future applications that push towards the electromagnetic near-field region such as those where the use of very large antenna arrays is envisioned. Motivated by this consideration, we show how physical principles can be used to derive a channel model that is also valid in the electromagnetic near-field. We show that wave propagation through a three-dimensional scattered medium can be generally modeled as a linear and space-variant system. We first review the physics principles that lead to a closed-form deterministic angular representation of the channel response. This serves as a basis for deriving a stochastic representation of the channel in terms of statistically independent Gaussian random coefficients for randomly spatially-stationary propagation environments. The very desirable property of spatial stationarity can always be retained by excluding reactive propagation mechanisms confined in the extreme near-field propagation region. Remarkably, the provided stochastic representation is directly connected to the Fourier spectral representation of a general spatially-stationary random field.

22 citations


Posted Content
TL;DR: In this paper, a Fourier plane-wave series expansion of the channel response is proposed to capture the essence of electromagnetic propagation in arbitrary scattering and is also valid in the (radiative) near-field.
Abstract: Imagine a MIMO communication system that fully exploits the propagation characteristics offered by an electromagnetic channel and ultimately approaches the limits imposed by wireless communications. This is the concept of Holographic MIMO communications. Accurate and tractable channel modeling is critical to understanding its full potential. Classical stochastic models used by communications theorists are derived under the electromagnetic far-field assumption. However, such assumption breaks down when large (compared to the wavelength) antenna arrays are considered - as envisioned in future wireless communications. In this paper, we start from the first principles of wave propagation and provide a Fourier plane-wave series expansion of the channel response, which fully captures the essence of electromagnetic propagation in arbitrary scattering and is also valid in the (radiative) near-field. The expansion is based on the Fourier spectral representation and has an intuitive physical interpretation, as it statistically describes the angular coupling between source and receiver. When discretized, it leads to a low-rank semi-unitarily equivalent approximation of the spatial electromagnetic channel in the angular domain. The developed channel model is used to compute the ergodic capacity of a point-to-point Holographic MIMO system with different degrees of channel state information.

14 citations


Proceedings ArticleDOI
27 Sep 2021
TL;DR: In this paper, the authors proposed to use a cell-free massive MIMO network to guarantee the stable operation of multiple FL processes by letting the iterations of these FL processes be executed together within a large-scale coherence time.
Abstract: Federated learning (FL) has been considered as a promising learning framework for future machine learning systems due to its privacy preservation and communication efficiency. In beyond-5G/6G systems, it is likely to have multiple FL groups with different learning purposes. This scenario leads to a question: How does a wireless network support multiple FL groups? As an answer, we first propose to use a cell-free massive multiple-input multiple-output (MIMO) network to guarantee the stable operation of multiple FL processes by letting the iterations of these FL processes be executed together within a large-scale coherence time. We then develop a novel scheme that asynchronously executes the iterations of FL processes under multicasting downlink and conventional uplink transmission protocols. Finally, we propose a simple/low-complexity resource allocation algorithm which optimally chooses the power and computation resources to minimize the execution time of each iteration of each FL process.

9 citations


Posted Content
TL;DR: In this paper, a signal-space approach is presented to study the Nyquist sampling and number of degrees of freedom of an electromagnetic field under arbitrary propagation conditions, and the developed approach is extended to study ensembles of a stationary random electromagnetic field that is representative of different propagation conditions.
Abstract: A signal-space approach is presented to study the Nyquist sampling and number of degrees of freedom of an electromagnetic field under arbitrary propagation conditions. Conventional signal processing tools such as the multidimensional sampling theorem and Fourier theory are used to build a linear system theoretic interpretation of electromagnetic wave propagations and revisit classical electromagnetic theory results, e.g., bandlimited property of an electromagnetic field, from a signal processing perspective. Scalar electromagnetic fields are considered for simplicity, which physically correspond to acoustic propagation in general or electromagnetic propagation under certain conditions. The developed approach is extended to study ensembles of a stationary random electromagnetic field that is representative of different propagation conditions.

6 citations


Posted Content
TL;DR: In this paper, a Fourier plane-wave series expansion of the channel response is proposed to capture the essence of electromagnetic propagation in arbitrary scattering and is also valid in the (radiative) near-field.
Abstract: Imagine a MIMO communication system that fully exploits the propagation characteristics offered by an electromagnetic channel and ultimately approaches the limits imposed by wireless communications. This is the concept of Holographic MIMO communications. Accurate and tractable channel modeling is critical to understanding its full potential. Classical stochastic models used by communications theorists are derived under the electromagnetic far-field assumption. However, such assumption breaks down when large (compared to the wavelength) antenna arrays are considered - as envisioned in future wireless communications. In this paper, we start from the first principles of wave propagation and provide a Fourier plane-wave series expansion of the channel response, which fully captures the essence of electromagnetic propagation in arbitrary scattering and is also valid in the (radiative) near-field. The expansion is based on the Fourier spectral representation and has an intuitive physical interpretation, as it statistically describes the angular coupling between source and receiver. When discretized, it leads to a low-rank semi-unitarily equivalent approximation of the spatial electromagnetic channel in the angular domain. The developed channel model is used to compute the ergodic capacity of a Holographic MIMO system with different degrees of channel state information.

4 citations


Proceedings ArticleDOI
23 Jun 2021
TL;DR: In this article, a communication model for multiuser multiple-input multiple-output (MIMO) systems based on large intelligent surfaces (LIS) is proposed, where the LIS is modeled as a collection of tightly packed antenna elements.
Abstract: This paper proposes a communication model for multiuser multiple-input multiple-output (MIMO) systems based on large intelligent surfaces (LIS), where the LIS is modeled as a collection of tightly packed antenna elements. The LIS system is first represented in a circuital way, obtaining expressions for the radiated and received powers, as well as for the coupling between the distinct elements. Then, this circuital model is used to characterize the channel in a line-of-sight propagation scenario, rendering the basis for the analysis and design of MIMO systems. Due to the particular properties of LIS, the model accounts for superdirectivity and mutual coupling effects along with near field propagation, necessary in those situations where the array dimension becomes very large. Finally, with the proposed model, the matched filter transmitter and the weighted minimum mean square error precoding are derived under both realistic constraints: limited radiated power and maximum ohmic losses.

4 citations


Proceedings ArticleDOI
17 Jan 2021
TL;DR: In this paper, frequency division multiplexing (FDM) is used for augmenting the baseband signals of multiple antenna channels such that a single ADC can sample a multitude of antennas in an array.
Abstract: Communication systems of the future will require hundreds of independent spatial channels achieved through dense antenna arrays connected to digital signal processing software defined radios. The cost and complexity of data converters are a significant concern with systems having hundreds of antennas. This paper explores frequency division multiplexing as an approach for augmenting the baseband signals of multiple antenna channels such that a single ADC can sample a multitude of antennas in an array. The approach is equally applicable to both massive MIMO and mm-wave digital wireless arrays. An example design based on Xilinx RF SoC for combining 4 antenna channels at 28 GHz into a single ADC is provided.

1 citations


Posted Content
TL;DR: In this article, the authors investigate sectorization and multi-point coordination in the form of three-fold sectorization, and demonstrate that sectorized antenna elements mitigates the detrimental effects of pilot contamination by rejecting a portion of interfering pilots in the spatial domain during channel estimation phase, and provide centralized and decentralized power control strategies to optimize the transmit powers in the network.
Abstract: Non-cooperative cellular massive MIMO, combined with power control, is known to lead to significant improvements in per-user throughput compared with conventional LTE technology. In this paper, we investigate further refinements to massive MIMO, first, in the form of three-fold sectorization, and second, coordinated multi-point operation (with and without sectorization), in which the three base stations cooperate in the joint service of their users. For these scenarios, we analyze the downlink performance for both maximum-ratio and zero-forcing precoding and derive closed-form lower-bound expressions on the achievable rate of the users. These expressions are then used to formulate power optimization problems with two throughput fairness criteria: i) network-wide max-min fairness, and ii) per-cell max-min fairness. Furthermore, we provide centralized and decentralized power control strategies to optimize the transmit powers in the network. We demonstrate that employing sectorized antenna elements mitigates the detrimental effects of pilot contamination by rejecting a portion of interfering pilots in the spatial domain during channel estimation phase. Simulation results with practical sectorized antennas reveal that sectorization and multi-point coordination combined with sectorization lead to more than 1.7x and 2.6x improvements in the 95%-likely per-user throughput, respectively.

1 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated further refinements to massive MIMO, first, in the form of three-fold sectorization, and second, coordinated multi-point operation (with and without sectorization), in which the three base stations cooperate in the joint service of their users.
Abstract: Non-cooperative cellular massive MIMO, combined with power control, is known to lead to significant improvements in per-user throughput compared with conventional LTE technology. In this paper, we investigate further refinements to massive MIMO, first, in the form of three-fold sectorization, and second, coordinated multi-point operation (with and without sectorization), in which the three base stations cooperate in the joint service of their users. For these scenarios, we analyze the downlink performance for both maximum-ratio and zero-forcing precoding and derive closed-form lower-bound expressions on the achievable rate of the users. These expressions are then used to formulate power optimization problems with two throughput fairness criteria: ${i}$ ) network-wide max-min fairness, and ii ) per-cell max-min fairness. Furthermore, we provide centralized and decentralized power control strategies to optimize the transmit powers in the network. We demonstrate that employing sectorized antenna elements mitigates the detrimental effects of pilot contamination by rejecting a portion of interfering pilots in the spatial domain during channel estimation phase. Simulation results with practical sectorized antennas reveal that sectorization and multi-point coordination combined with sectorization lead to more than $1.7\times $ and $2.6\times $ improvements in the 95%-likely per-user throughput, respectively.

Posted Content
TL;DR: In this paper, the authors proposed to use a cell-free massive MIMO network to guarantee the stable operation of multiple FL processes by letting the iterations of these FL processes be executed together within a large-scale coherence time.
Abstract: Federated learning (FL) has been considered as a promising learning framework for future machine learning systems due to its privacy preservation and communication efficiency. In beyond-5G/6G systems, it is likely to have multiple FL groups with different learning purposes. This scenario leads to a question: How does a wireless network support multiple FL groups? As an answer, we first propose to use a cell-free massive multiple-input multiple-output (MIMO) network to guarantee the stable operation of multiple FL processes by letting the iterations of these FL processes be executed together within a large-scale coherence time. We then develop a novel scheme that asynchronously executes the iterations of FL processes under multicasting downlink and conventional uplink transmission protocols. Finally, we propose a simple/low-complexity resource allocation algorithm which optimally chooses the power and computation resources to minimize the execution time of each iteration of each FL process.

Journal ArticleDOI
TL;DR: In this paper, the authors explored FDM for combining multiple antenna outputs at IF into a single wideband signal that can be sampled and digitized using a high-speed wideband ADC.
Abstract: Communications at mm-wave frequencies and above rely heavily on beamforming antenna arrays. Typically, hundreds, if not thousands, of independent antenna channels are used to achieve high SNR for throughput and increased capacity. Using a dedicated ADC per antenna receiver is preferable but it’s not practical for very large arrays due to unreasonable cost and complexity. Frequency division multiplexing (FDM) is a well-known technique for combining multiple signals into a single wideband channel. In a first of its kind measurements, this paper explores FDM for combining multiple antenna outputs at IF into a single wideband signal that can be sampled and digitized using a high-speed wideband ADC. The sampled signals are sub-band filtered and digitally down-converted to obtain individual antenna channels. A prototype receiver was realized with a uniform linear array consisting of 4 elements with 250 MHz bandwidth per channel at 28 GHz carrier frequency. Each of the receiver chains were frequency-multiplexed at an intermediate frequency of 1 GHz to avoid the requirement for multiple, precise local oscillators (LOs). Combined narrowband receiver outputs were sampled using a single ADC with digital front-end operating on a Xilinx ZCU-1285 RF SoC FPGA to synthesize 4 digital beams. The approach allows $M$ -fold increase in spatial degrees of freedom per ADC, for temporal oversampling by a factor of $M$ .