scispace - formally typeset
Search or ask a question
Author

Thomas L. Marzetta

Bio: Thomas L. Marzetta is an academic researcher from New York University. The author has contributed to research in topics: MIMO & Precoding. The author has an hindex of 57, co-authored 206 publications receiving 45509 citations. Previous affiliations of Thomas L. Marzetta include Mathematical Sciences Research Institute & Alcatel-Lucent.


Papers
More filters
Posted Content
TL;DR: This paper proposes a communication model for multiuser multiple-input multiple-output (MIMO) systems based on large intelligent surfaces (LIS), where the LIS is modeled as a collection of tightly packed antenna elements.
Abstract: This paper proposes a communication model for multiuser multiple-input multiple-output (MIMO) systems based on large intelligent surfaces (LIS), where the LIS is modeled as a collection of tightly packed antenna elements. The LIS system is first represented in a circuital way, obtaining expressions for the radiated and received powers, as well as for the coupling between the distinct elements. Then, this circuital model is used to characterize the channel in a line-of-sight propagation scenario, rendering the basis for the analysis and design of MIMO systems. Due to the particular properties of LIS, the model accounts for superdirectivity and mutual coupling effects along with near field propagation, necessary in those situations where the array dimension becomes very large. Finally, with the proposed model, the matched filter transmitter and the weighted minimum mean square error precoding are derived under both realistic constraints: limited radiated power and maximum ohmic losses.

7 citations

Patent
17 Sep 2010
TL;DR: In this paper, a construction is provided for uplink pilot signals in a cellular network, where three sets of pilot signals are defined, having orthogonality properties that lead to reduced inter-cell interference.
Abstract: A construction is provided for uplink pilot signals in a cellular network Three sets of pilot signals are defined, having orthogonality properties that lead to reduced inter-cell interference In example embodiments, the network has a reuse factor of 3 for pilot signals, with sets U, V, and W of pilot signals assigned to cells in respective reuse classes The pilots of each set form an orthogonal basis Some pilots of each class, ie those which will generally be assigned to mobile stations near the cell edges, will also form an orthogonal basis with some pilots of each of the other classes

7 citations

Posted Content
TL;DR: This work quantifies the number of mmWave service antennas that are needed to duplicate the performance of a specified number of PCS service antennas, and finds that, to achieve the same per-terminal max-min 95%-likely downlink throughput, 10000 mmWave antennas are needed.
Abstract: If we assume line-of-sight propagation and perfect channel state information at the base station -- consistent with slow moving terminals -- then a direct performance comparison between single-cell Massive MIMO at PCS and mmWave frequency bands is straightforward and highly illuminating. Line-of-sight propagation is considered favorable for mmWave because of minimal attenuation, and its facilitation of hybrid beamforming to reduce the required number of active transceivers. We quantify the number of mmWave (60 GHz) service antennas that are needed to duplicate the performance of a specified number of PCS (1.9 GHz) service antennas. As a baseline we consider a modest PCS deployment of 128 antennas serving 18 terminals. We find that, to achieve the same per-terminal max-min 95%-likely downlink throughput, 10000 mmWave antennas are needed. To match the total antenna area of the PCS array would require 128000 half-wavelength mmWave antennas, but a much reduced number is adequate because the large number of antennas also confers greater channel orthogonality. The principal alleged benefit of mmWave technology--vast amounts of inexpensive spectrum--is at least partially offset by the complexity of possibly unwieldy amounts of hardware.

6 citations

Journal ArticleDOI
25 Apr 2022
TL;DR: In this article , the beamforming vector of super-directive arrays was derived based on a novel coupling matrix-enabled method, and an approach to obtain the coupling matrix, which is derived by the spherical wave expansion method and active element pattern.
Abstract: In most multiple-input multiple-output (MIMO) communication systems, e.g., Massive MIMO, the antenna spacing is generally no less than half a wavelength. It helps to reduce the mutual coupling and therefore facilitate the system design. The maximum array gain is the number of antennas in this settings. However, when the antenna spacing is made very small, the array gain of a compact array can be proportional to the square of the number of antennas - a value much larger than the traditional array. To achieve this so-called "superdirectivity" however, the calculation of the excitation coefficients (beamforming vector) is known to be a challenging problem. In this paper, we derive the beamforming vector of superdirective arrays based on a novel coupling matrix-enabled method. We also propose an approach to obtain the coupling matrix, which is derived by the spherical wave expansion method and active element pattern. The full-wave electromagnetic simulations are conducted to validate the effectiveness of our proposed method. Simulation results show that when the beamforming vector obtained by our method is applied, the directivity of the designed dipole antenna array has a good agreement with the theoretical values.

6 citations


Cited by
More filters
Journal ArticleDOI
Emre Telatar1
01 Nov 1999
TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Abstract: We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas. We show that the potential gains of such multi-antenna systems over single-antenna systems is rather large under independenceassumptions for the fades and noises at different receiving antennas.

12,542 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations