scispace - formally typeset
Search or ask a question
Author

Thomas L. Marzetta

Bio: Thomas L. Marzetta is an academic researcher from New York University. The author has contributed to research in topics: MIMO & Precoding. The author has an hindex of 57, co-authored 206 publications receiving 45509 citations. Previous affiliations of Thomas L. Marzetta include Mathematical Sciences Research Institute & Alcatel-Lucent.


Papers
More filters
Proceedings ArticleDOI
22 Aug 2012
TL;DR: This work presents the design, realization, and evaluation of Argos, the first reported base station architecture that is capable of serving many terminals simultaneously through MUBF with a large number of antennas (M >> 10), and reports an Argos prototype with 64 antennas and capable ofserving 15 clients simultaneously.
Abstract: Multi-user multiple-input multiple-output theory predicts manyfold capacity gains by leveraging many antennas on wireless base stations to serve multiple clients simultaneously through multi-user beamforming (MUBF). However, realizing a base station with a large number antennas is non-trivial, and has yet to be achieved in the real-world. We present the design, realization, and evaluation of Argos, the first reported base station architecture that is capable of serving many terminals simultaneously through MUBF with a large number of antennas (M >> 10). Designed for extreme flexibility and scalability, Argos exploits hierarchical and modular design principles, properly partitions baseband processing, and holistically considers real-time requirements of MUBF. Argos employs a novel, completely distributed, beamforming technique, as well as an internal calibration procedure to enable implicit beamforming with channel estimation cost independent of the number of base station antennas. We report an Argos prototype with 64 antennas and capable of serving 15 clients simultaneously. We experimentally demonstrate that by scaling from 1 to 64 antennas the prototype can achieve up to 6.7 fold capacity gains while using a mere 1/64th of the transmission power.

730 citations

Journal ArticleDOI
TL;DR: This work compares the two most prominent linear pre-coders, conjugate beamforming and zero-forcing, with respect to net spectral-efficiency and radiated energy-efficiency in a simplified single-cell scenario where propagation is governed by independent Rayleigh fading, and where channel-state information acquisition and data transmission are both performed during a short coherence interval.
Abstract: Large-Scale Antenna Systems (LSAS) is a form of multi-user MIMO technology in which unprecedented numbers of antennas serve a significantly smaller number of autonomous terminals. We compare the two most prominent linear pre-coders, conjugate beamforming and zero-forcing, with respect to net spectral-efficiency and radiated energy-efficiency in a simplified single-cell scenario where propagation is governed by independent Rayleigh fading, and where channel-state information (CSI) acquisition and data transmission are both performed during a short coherence interval. An effective-noise analysis of the pre-coded forward channel yields explicit lower bounds on net capacity which account for CSI acquisition overhead and errors as well as the sub-optimality of the pre-coders. In turn the bounds generate trade-off curves between radiated energy-efficiency and net spectral-efficiency. For high spectral-efficiency and low energy-efficiency zero-forcing outperforms conjugate beamforming, while at low spectral-efficiency and high energy-efficiency the opposite holds. Surprisingly, in an optimized system, the total LSAS-critical computational burden of conjugate beamforming may be greater than that of zero-forcing. Conjugate beamforming may still be preferable to zero-forcing because of its greater robustness, and because conjugate beamforming lends itself to a de-centralized architecture and de-centralized signal processing.

729 citations

Journal ArticleDOI
TL;DR: A central limit theorem is proved for MIMO channels with a large number of antennas, which is described as a "channel-hardening" result for data and voice services, scheduling, and rate feedback.
Abstract: Wireless data traffic is expected to grow over the next few years and the technologies that will provide data services are still being debated. One possibility is to use multiple antennas at base stations and terminals to get very high spectral efficiencies in rich scattering environments. Such multiple-input/multiple-output (MIMO) channels can then be used in conjunction with scheduling and rate-feedback algorithms to further increase channel throughput. This paper provides an analysis of the expected gains due to scheduling and bits needed for rate feedback. Our analysis requires an accurate approximation of the distribution of the MIMO channel mutual information. Because the exact distribution of the mutual information in a Rayleigh-fading environment is difficult to analyze, we prove a central limit theorem for MIMO channels with a large number of antennas. While the growth in average mutual information (capacity) of a MIMO channel with the number of antennas is well understood, it turns out that the variance of the mutual information can grow very slowly or even shrink as the number of antennas grows. We discuss implications of this "channel-hardening" result for data and voice services, scheduling, and rate feedback. We also briefly discuss the implications when shadow fading effects are included.

725 citations

Journal ArticleDOI
TL;DR: Cell-free Massive MIMO is shown to provide five- to ten-fold improvement in 95%-likely per-user throughput over small-cell operation and a near-optimal power control algorithm is developed that is considerably simpler than exact max–min power control.
Abstract: Cell-free Massive multiple-input multiple-output (MIMO) comprises a large number of distributed low-cost low-power single antenna access points (APs) connected to a network controller. The number of AP antennas is significantly larger than the number of users. The system is not partitioned into cells and each user is served by all APs simultaneously. The simplest linear precoding schemes are conjugate beamforming and zero-forcing. Max–min power control provides equal throughput to all users and is considered in this paper. Surprisingly, under max–min power control, most APs are found to transmit at less than full power. The zero-forcing precoder significantly outperforms conjugate beamforming. For zero-forcing, a near-optimal power control algorithm is developed that is considerably simpler than exact max–min power control. An alternative to cell-free systems is small-cell operation in which each user is served by only one AP for which power optimization algorithms are also developed. Cell-free Massive MIMO is shown to provide five- to ten-fold improvement in 95%-likely per-user throughput over small-cell operation.

561 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explain how the first chapter of the massive MIMO research saga has come to an end, while the story has just begun, and outline five new massive antenna array related research directions.

556 citations


Cited by
More filters
Journal ArticleDOI
Emre Telatar1
01 Nov 1999
TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Abstract: We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas. We show that the potential gains of such multi-antenna systems over single-antenna systems is rather large under independenceassumptions for the fades and noises at different receiving antennas.

12,542 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations