scispace - formally typeset
Search or ask a question
Author

Thomas L. Marzetta

Bio: Thomas L. Marzetta is an academic researcher from New York University. The author has contributed to research in topics: MIMO & Precoding. The author has an hindex of 57, co-authored 206 publications receiving 45509 citations. Previous affiliations of Thomas L. Marzetta include Mathematical Sciences Research Institute & Alcatel-Lucent.


Papers
More filters
Journal ArticleDOI
TL;DR: This work takes a different approach in which the CRB is derived as the solution to an unconstrained quadratic maximization problem, which enables it to handle the singular case in a simple yet rigorous manner.
Abstract: The case of a singular Fisher information matrix (FIM) represents a significant complication for the theory of the Cramer-Rao lower bound (CRB) that is usually handled by resorting to the pseudoinverse of the Fisher matrix. We take a different approach in which the CRB is derived as the solution to an unconstrained quadratic maximization problem, which enables us to handle the singular case in a simple yet rigorous manner. When the Fisher matrix is singular, except under unusual circumstances, any estimator having the specified bias derivatives that figure in the CRB must have infinite variance.

245 citations

Proceedings ArticleDOI
22 May 2011
TL;DR: The so-called pilot contamination effect discovered in previous work is analyzed, and it is shown that this effect persists under the finite-dimensional channel model that is considered.
Abstract: We consider multicell multiuser MIMO systems with a very large number of antennas at the base station. We assume that the channel is estimated by using uplink training sequences, and we consider a physical channel model where the angular domain is separated into a finite number of directions. We analyze the so-called pilot contamination effect discovered in previous work, and show that this effect persists under the finite-dimensional channel model that we consider. We further derive closed-form bounds on the achievable rate of uplink data transmission with maximum-ratio combining, for a finite and an infinite number of base station antennas.

243 citations

Journal ArticleDOI
24 Jun 2001
TL;DR: The technique is based on analytically computing the expectation of an exponential quadratic function of an i.r. unitary matrix and makes use of a Fourier integral representation of the constituent Dirac delta functions in the underlying density.
Abstract: An important open problem in multiple-antenna communications theory is to compute the capacity of a wireless link subject to flat Rayleigh block-fading, with no channel-state information (CSI) available either to the transmitter or to the receiver. The isotropically random (i.r.) unitary matrix-having orthonormal columns, and a probability density that is invariant to premultiplication by an independent unitary matrix-plays a central role in the calculation of capacity and in some special cases happens to be capacity-achieving. We take an important step toward computing this capacity by obtaining, in closed form, the probability density of the received signal when transmitting i.r. unitary matrices. The technique is based on analytically computing the expectation of an exponential quadratic function of an i.r. unitary matrix and makes use of a Fourier integral representation of the constituent Dirac delta functions in the underlying density. Our formula for the received signal density enables us to evaluate the mutual information for any case of interest, something that could previously only be done for single transmit and receive antennas. Numerical results show that at high signal-to-noise ratio (SNR), the mutual information is maximized for M=min(N, T/2) transmit antennas, where N is the number of receive antennas and T is the length of the coherence interval, whereas at low SNR, the mutual information is maximized by allocating all transmit power to a single antenna.

227 citations

Proceedings ArticleDOI
28 Jun 2009
TL;DR: A multi-cell MMSE-based precoding is proposed that, when combined with frequency/time/pilot reuse techniques, mitigate this problem of pilot contamination.
Abstract: This paper considers a multi-cell multiple antenna system with precoding at the base stations for downlink transmission. To enable precoding, channel state information (CSI) is obtained via uplink training. This paper mathematically characterizes the impact that uplink training has on the performance of multi-cell multiple antenna systems. When non-orthogonal training sequences are used for uplink training, it is shown that the precoding matrix used by the base station in one cell becomes corrupted by the channel between that base station and the users in other cells. This problem of pilot contamination is analyzed in this paper. A multi-cell MMSE-based precoding is proposed that, when combined with frequency/time/pilot reuse techniques, mitigate this problem.

213 citations

Proceedings ArticleDOI
Hong Yang1, Thomas L. Marzetta1
01 Oct 2013
TL;DR: An LSAS with sixty-four OdB gain service antennas per cell can simultaneously serve 15 users with a total energy efficiency almost 1000 times greater than that of a typical LTE base station and at the same time more than quadruple the aggregate spectral efficiency.
Abstract: Energy efficiency and spectral efficiency of a Large Scale Antenna System in both dense urban and suburban multi-macro-cellular scenarios are quantified using a new total energy efficiency model, which consists of a rigorous capacity lower bound and a power model accounting for RF generation, LSAS critical computing and a per antenna internal power consumption for other analog electronics and A/D and D/A converters that are associated with each LSAS service antenna. Based on our model, in dense urban, an LSAS with sixty-four OdB gain service antennas per cell, each service antenna consuming an internal power of 128 mW above the power required for RF generation and for LSAS critical computing, can simultaneously serve 15 users with a total energy efficiency almost 1000 times greater than that of a typical LTE base station and at the same time more than quadruple the aggregate spectral efficiency.

199 citations


Cited by
More filters
Journal ArticleDOI
Emre Telatar1
01 Nov 1999
TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Abstract: We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas. We show that the potential gains of such multi-antenna systems over single-antenna systems is rather large under independenceassumptions for the fades and noises at different receiving antennas.

12,542 citations

Journal ArticleDOI
Simon Haykin1
TL;DR: Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks: radio-scene analysis, channel-state estimation and predictive modeling, and the emergent behavior of cognitive radio.
Abstract: Cognitive radio is viewed as a novel approach for improving the utilization of a precious natural resource: the radio electromagnetic spectrum. The cognitive radio, built on a software-defined radio, is defined as an intelligent wireless communication system that is aware of its environment and uses the methodology of understanding-by-building to learn from the environment and adapt to statistical variations in the input stimuli, with two primary objectives in mind: /spl middot/ highly reliable communication whenever and wherever needed; /spl middot/ efficient utilization of the radio spectrum. Following the discussion of interference temperature as a new metric for the quantification and management of interference, the paper addresses three fundamental cognitive tasks. 1) Radio-scene analysis. 2) Channel-state estimation and predictive modeling. 3) Transmit-power control and dynamic spectrum management. This work also discusses the emergent behavior of cognitive radio.

12,172 citations

Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations