scispace - formally typeset
Search or ask a question
Author

Thomas M. Donnelly

Bio: Thomas M. Donnelly is an academic researcher from École nationale vétérinaire d'Alfort. The author has contributed to research in topics: Macrophage migration inhibitory factor & Medicine. The author has an hindex of 26, co-authored 91 publications receiving 5175 citations. Previous affiliations of Thomas M. Donnelly include University of Tennessee Health Science Center & United States Department of the Army.


Papers
More filters
Journal ArticleDOI
07 Sep 1995-Nature
TL;DR: The unexpected finding that low con-centrations of glucocorticoids induce rather than inhibit MIF production from macrophages is reported, identifying a unique counter-regulatory system that functions to control inflammatory and immune responses.
Abstract: Glucocorticoid hormones are important for vital functions and act to modulate inflammatory and immune responses. Yet, in contrast to other hormonal systems, no endogenous mediators have been identified that can directly counter-regulate their potent anti-inflammatory and immunosuppressive properties. Recent investigations of the protein macrophage migration inhibitory factor (MIF), which was discovered originally to be a T-lymphocyte-derived factor, have established it to be a pro-inflammatory pituitary and macrophage cytokine and a critical mediator of septic shock. Here we report the unexpected finding that low concentrations of glucocorticoids induce rather than inhibit MIF production from macrophages. MIF then acts to override glucocorticoid-mediated inhibition of cytokine secretion by lipopolysaccharide (LPS)-stimulated monocytes and to overcome glucocorticoid protection against lethal endotoxaemia. These observations identify a unique counter-regulatory system that functions to control inflammatory and immune responses.

1,130 citations

Journal ArticleDOI
TL;DR: It is reported that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli and assigned a previously unsuspected but critical role for MIF in antigen-specific immune responses.
Abstract: The protein known as macrophage migration inhibitory factor (MIF) was one of the first cytokines to be discovered and was described 30 years ago to be a T-cell-derived factor that inhibited the random migration of macrophages in vitro. A much broader role for MIF has emerged recently as a result of studies that have demonstrated it to be released from the anterior pituitary gland in vivo. MIF also is the first protein that has been identified to be secreted from monocytes/macrophages upon glucocorticoid stimulation. Once released, MIF acts to "override" or counter-regulate the suppressive effects of glucocorticoids on macrophage cytokine production. We report herein that MIF plays an important regulatory role in the activation of T cells induced by mitogenic or antigenic stimuli. Activated T cells produce MIF and neutralizing anti-MIF antibodies inhibit T-cell proliferation and interleukin 2 production in vitro, and suppress antigen-driven T-cell activation and antibody production in vivo. T cells also release MIF in response to glucocorticoid stimulation and MIF acts to override glucocorticoid inhibition of T-cell proliferation and interleukin 2 and interferon gamma production. These studies indicate that MIF acts in concert with glucocorticoids to control T-cell activation and assign a previously unsuspected but critical role for MIF in antigen-specific immune responses.

655 citations

Journal ArticleDOI
TL;DR: It is reported here that raising the plasma HDL concentration protects mice against endotoxin in vivo, and a simple leaflet insertion model for binding and neutralization of lipopolysaccharide by phospholipid on the surface of HDL is suggested.
Abstract: Overwhelming bacterial infection is accompanied by fever, hypotension, disseminated intravascular coagulation, and multiple organ failure leading to death in 30-80% of cases. These classical symptoms of septic shock are caused by potent cytokines that are produced in response to endotoxin released from Gram-negative bacteria. Treatments with antibodies and receptor antagonists to block endotoxin or cytokine mediators have given mixed results in clinical trials. High density lipoprotein (HDL) is a natural component of plasma that is known to neutralize endotoxin in vitro. We report here that raising the plasma HDL concentration protects mice against endotoxin in vivo. Transgenic mice with 2-fold-elevated plasma HDL levels had more endotoxin bound to HDL, lower plasma cytokine levels, and improved survival rates compared with low-HDL mice. Intravenous infusion of HDL also protected mice, but only when given as reconstituted HDL prepared from phospholipid and either HDL apoprotein or an 18-amino acid peptide synthesized to mimic the structure of apolipoprotein A-I of HDL. Intact plasma HDL was mildly toxic, and HDL apoprotein was ineffective. The effectiveness of the reconstituted peptide renders very unlikely any significant contribution to protection by trace proteins in apo-HDL. These data suggest a simple leaflet insertion model for binding and neutralization of lipopolysaccharide by phospholipid on the surface of HDL. Plasma HDL may normally act to protect against endotoxin; this protection may be augmented by administration of reconstituted HDL or reconstituted peptides.

473 citations

Journal ArticleDOI
TL;DR: The influence of high school community service participation, extracurricular involvement, and civic knowledge on voting and volunteering in early adulthood were examined using the National Educational Longitudinal Study.
Abstract: The influences of high school community service participation, extracurricular involvement, and civic knowledge on voting and volunteering in early adulthood were examined using the National Educational Longitudinal Study. The major finding in this study is that both voluntary and school-required community service in high school were strong predictors of adult voting and volunteering. In addition, involvement in high school extracurricular activities was predictive of voting and volunteering. Civic knowledge was related only to voting. The authors consider the findings for their policy relevance and their contributions to theoretical debates.

356 citations

Journal Article
TL;DR: The constitutive production of MIF by several cell and tissue types together with its rapid release from intracellular pools distinguishes MIF from other cytokines or hormonal mediators and significantly expands the physiological role of this unique counter-regulator of glucocorticoid action.
Abstract: Macrophage migration inhibitory factor (MIF) is an important constituent of the host response to stress and infection and is the first mediator that has been identified to be released from immune cells upon stimulation with glucocorticoids. MIF also has been shown to be secreted from the anterior pituitary gland, monocytes/macrophages, and T cells activated by various proinflammatory stimuli. Once released, MIF acts to counter-regulate the inhibitory effect of glucocorticoids on inflammatory cytokine production. To characterize more precisely the role of MIF in the host response to infection, we undertook a systematic analysis of MIF expression in various organs of the rat after endotoxin (lipopolysaccharide) administration. MIF protein and mRNA were analyzed by immunohistochemistry and in situ hybridization, respectively. MIF was found to be expressed constitutively in organs such as the lung, liver, kidney, spleen, adrenal gland, and skin. Significant quantities of MIF protein were detected preformed in various cell types and appeared to be released as a consequence of endotoxemia. In virtually all tissues examined, the loss of MIF protein 6 hours after lipopolysaccharide administration was accompanied by the induction of MIF mRNA and, at 24 hours, by the restoration of immunoreactive, intracellular MIF. The constitutive production of MIF by several cell and tissue types together with its rapid release from intracellular pools distinguishes MIF from other cytokines or hormonal mediators and significantly expands the physiological role of this unique counter-regulator of glucocorticoid action.

301 citations


Cited by
More filters
Journal ArticleDOI
13 Dec 2001-Nature
TL;DR: This integrating paradigm provides a new conceptual framework for future research and drug discovery in diabetes-specific microvascular disease and seems to reflect a single hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain.
Abstract: Diabetes-specific microvascular disease is a leading cause of blindness, renal failure and nerve damage, and diabetes-accelerated atherosclerosis leads to increased risk of myocardial infarction, stroke and limb amputation. Four main molecular mechanisms have been implicated in glucose-mediated vascular damage. All seem to reflect a single hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain. This integrating paradigm provides a new conceptual framework for future research and drug discovery.

8,289 citations

Journal ArticleDOI
TL;DR: Athrosclerosis and cardiomyopathy in type 2 diabetes are caused in part by pathway-selective insulin resistance, which increases mitochondrial ROS production from free fatty acids and by inactivation of antiatherosclerosis enzymes by ROS.
Abstract: Oxidative stress plays a pivotal role in the development of diabetes complications, both microvascular and cardiovascular. The metabolic abnormalities of diabetes cause mitochondrial superoxide overproduction in endothelial cells of both large and small vessels, as well as in the myocardium. This increased superoxide production causes the activation of 5 major pathways involved in the pathogenesis of complications: polyol pathway flux, increased formation of AGEs (advanced glycation end products), increased expression of the receptor for AGEs and its activating ligands, activation of protein kinase C isoforms, and overactivity of the hexosamine pathway. It also directly inactivates 2 critical antiatherosclerotic enzymes, endothelial nitric oxide synthase and prostacyclin synthase. Through these pathways, increased intracellular reactive oxygen species (ROS) cause defective angiogenesis in response to ischemia, activate a number of proinflammatory pathways, and cause long-lasting epigenetic changes that drive persistent expression of proinflammatory genes after glycemia is normalized ("hyperglycemic memory"). Atherosclerosis and cardiomyopathy in type 2 diabetes are caused in part by pathway-selective insulin resistance, which increases mitochondrial ROS production from free fatty acids and by inactivation of antiatherosclerosis enzymes by ROS. Overexpression of superoxide dismutase in transgenic diabetic mice prevents diabetic retinopathy, nephropathy, and cardiomyopathy. The aim of this review is to highlight advances in understanding the role of metabolite-generated ROS in the development of diabetic complications.

3,822 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: Because of the high mortality of sepsis in the face of standard treatment, many efforts have been made to improve understanding of the dysregulation of the host response in sepsi, and much has been learnt of the basic principles governing bacterial–host interactions.
Abstract: Sepsis is a condition that results from a harmful or damaging host response to infection. Many of the components of the innate immune response that are normally concerned with host defences against infection can, under some circumstances, cause cell and tissue damage and hence multiple organ failure, the clinical hallmark of sepsis. Because of the high mortality of sepsis in the face of standard treatment, many efforts have been made to improve understanding of the dysregulation of the host response in sepsis. As a result, much has been learnt of the basic principles governing bacterial-host interactions, and new opportunities for therapeutic intervention have been revealed.

2,582 citations

Journal Article
TL;DR: The goal in the study of aging is not to halt the process, because the authors can no more be cured of aging than of birth, but to slow and soften the sharpest edges of the biological unraveling that constitutes aging.
Abstract: Over the past 5 yr, we have examined some of the sharpest edges of the pathology of aging. We have studied the capacity of aged organisms to respond appropriately to stress and the capacity of stre...

2,084 citations