scispace - formally typeset
Search or ask a question
Author

Thomas Moore

Bio: Thomas Moore is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Magnetic domain & Rashba effect. The author has an hindex of 1, co-authored 1 publications receiving 716 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In an ultrathin Co nanowire, integrated in a trilayer with structural inversion asymmetry (SIA), the high spin-torque efficiency facilitates the depinning and leads to high mobility, while the SIA-mediated Rashba field controlling the domain-wall chirality stabilizes the Bloch domain- wall structure.
Abstract: The propagation of magnetic domain walls induced by spin-polarized currents has launched new concepts for memory and logic devices. A wave of studies focusing on permalloy (NiFe) nanowires has found evidence for high domain-wall velocities (100 m s(-1); refs,), but has also exposed the drawbacks of this phenomenon for applications. Often the domain-wall displacements are not reproducible, their depinning from a thermally stable position is difficult and the domain-wall structural instability (Walker breakdown) limits the maximum velocity. Here, we show that the combined action of spin-transfer and spin-orbit torques offers a comprehensive solution to these problems. In an ultrathin Co nanowire, integrated in a trilayer with structural inversion asymmetry (SIA), the high spin-torque efficiency facilitates the depinning and leads to high mobility, while the SIA-mediated Rashba field controlling the domain-wall chirality stabilizes the Bloch domain-wall structure. Thus, the high-mobility regime is extended to higher current densities, allowing domain-wall velocities up to 400 m s(-1).

801 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents as discussed by the authors and the associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not.
Abstract: In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents. The associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not. This review provides a theoretical and experimental treatment of this subfield of spintronics, beginning with distinct microscopic mechanisms seen in ferromagnets and concluding with a discussion of optical-, transport-, and magnetization-dynamics-based experiments closely linked to the microscopic and phenomenological theories presented.

2,178 citations

Journal ArticleDOI
TL;DR: This work directly confirms the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral and resolves the origin of controversial experimental results.
Abstract: In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a Neel configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices.

1,591 citations

Journal ArticleDOI
TL;DR: It is demonstrated by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects.
Abstract: Magnetic skyrmions are topologically stable spin configurations, which usually originate from chiral interactions known as Dzyaloshinskii-Moriya interactions. Skyrmion lattices were initially observed in bulk non-centrosymmetric crystals, but have more recently been noted in ultrathin films, where their existence is explained by interfacial Dzyaloshinskii-Moriya interactions induced by the proximity to an adjacent layer with strong spin-orbit coupling. Skyrmions are promising candidates as information carriers for future information-processing devices due to their small size (down to a few nanometres) and to the very small current densities needed to displace skyrmion lattices. However, any practical application will probably require the creation, manipulation and detection of isolated skyrmions in magnetic thin-film nanostructures. Here, we demonstrate by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects.

1,520 citations

Journal ArticleDOI
TL;DR: It is suggested that the SHE torque also affects current-driven magnetic domain wall motion in Pt/ferromagnet bilayers and can enable memory and logic devices with similar critical currents and improved reliability compared to conventional spin-torque switching.
Abstract: We show that in a perpendicularly magnetized Pt/Co bilayer the spin-Hall effect (SHE) in Pt can produce a spin torque strong enough to efficiently rotate and switch the Co magnetization. We calculate the phase diagram of switching driven by this torque, finding quantitative agreement with experiments. When optimized, the SHE torque can enable memory and logic devices with similar critical currents and improved reliability compared to conventional spin-torque switching. We suggest that the SHE torque also affects current-driven magnetic domain wall motion in Pt/ferromagnet bilayers.

1,455 citations

Journal ArticleDOI
TL;DR: An internal effective magnetic field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire.
Abstract: Spin-polarized currents provide a powerful means of manipulating the magnetization of nanodevices, and give rise to spin transfer torques that can drive magnetic domain walls along nanowires. In ultrathin magnetic wires, domain walls are found to move in the opposite direction to that expected from bulk spin transfer torques, and also at much higher speeds. Here we show that this is due to two intertwined phenomena, both derived from spin–orbit interactions. By measuring the influence of magnetic fields on current-driven domain-wall motion in perpendicularly magnetized Co/Ni/Co trilayers, we find an internal effective magnetic field acting on each domain wall, the direction of which alternates between successive domain walls. This chiral effective field arises from a Dzyaloshinskii–Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire. Elucidating the mechanism for the manipulation of domain walls in ultrathin magnetic films will enable the development of new families of spintronic devices. The influence of magnetic fields on the current-driven motion of domain walls in nanowires with perpendicular anisotropy shows that two spin–orbit-derived mechanisms are responsible for their motion.

1,114 citations