scispace - formally typeset
Search or ask a question
Author

Thomas N. Sato

Bio: Thomas N. Sato is an academic researcher from University of Texas Southwestern Medical Center. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor. The author has an hindex of 19, co-authored 32 publications receiving 13603 citations. Previous affiliations of Thomas N. Sato include Harvard University & Roche Institute of Molecular Biology.

Papers
More filters
Journal ArticleDOI
04 Jul 1997-Science
TL;DR: The discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.
Abstract: Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.

3,552 citations

Journal ArticleDOI
27 Dec 1996-Cell
TL;DR: It is shown that mice engineered to lack Angiopoietin-1 display angiogenic deficits reminiscent of those previously seen in mice lacking TIE2, demonstrating that AngiopOietIn-1 is a primary physiologic ligand for TIE1 and that it has critical in vivo angiogenesis actions that are distinct from VEGF and that are not reflected in the classic in vitro assays used to characterize VEGf.

2,895 citations

Journal ArticleDOI
06 Jul 1995-Nature
TL;DR: In vivo analyses of embryos deficient in Tie-2 showed that it is important in angiogen-esis, particularly for vascular network formation in endothelial cells, which contrasts with previous reports on Tie-1 function in vasculogenesis and/or endothelial cell survival.
Abstract: Tie-1 and Tie-2 define a new class of receptor tyrosine kinases that are specifically expressed in developing vascular endothelial cells. To study the functions of Tie-1 and Tie-2 during vascular endothelial cell growth and differentiation in vivo, targeted mutations of the genes in mice were introduced by homologous recombination. Embryos deficient in Tie-1 failed to establish structural integrity of vascular endothelial cells, resulting in oedema and subsequently localized haemorrhage. However, analyses of embryos deficient in Tie-2 showed that it is important in angiogenesis, particularly for vascular network formation in endothelial cells. This result contrasts with previous reports on Tie-2 function in vasculogenesis and/or endothelial cell survival. Our in vivo analyses indicate that the structurally related receptor tyrosine kinases Tie-1 and Tie-2 have important but distinct roles in the formation of blood vessels.

1,840 citations

Journal ArticleDOI
24 Dec 1999-Science
TL;DR: Angiopoietin-1 may be useful for reducing microvascular leakage in diseases in which the leakage results from chronic inflammation or elevated V EGF and, in combination with VEGF, for promoting growth of nonleaky vessels.
Abstract: Angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF) are endothelial cell-specific growth factors. Direct comparison of transgenic mice overexpressing these factors in the skin revealed that the VEGF-induced blood vessels were leaky, whereas those induced by Ang1 were nonleaky. Moreover, vessels in Ang1-overexpressing mice were resistant to leaks caused by inflammatory agents. Coexpression of Ang1 and VEGF had an additive effect on angiogenesis but resulted in leakage-resistant vessels typical of Ang1. Ang1 therefore may be useful for reducing microvascular leakage in diseases in which the leakage results from chronic inflammation or elevated VEGF and, in combination with VEGF, for promoting growth of nonleaky vessels.

1,403 citations

Journal ArticleDOI
16 Oct 1998-Science
TL;DR: It is shown that transgenic overexpression of angiopoietin-1 in the skin of mice produces larger, more numerous, and more highly branched vessels, raising the possibility that angioietins can be used, alone or in combination with VEGF to promote therapeutic angiogenesis.
Abstract: The angiopoietins and members of the vascular endothelial growth factor (VEGF) family are the only growth factors thought to be largely specific for vascular endothelial cells. Targeted gene inactivation studies in mice have shown that VEGF is necessary for the early stages of vascular development and that angiopoietin-1 is required for the later stages of vascular remodeling. Here it is shown that transgenic overexpression of angiopoietin-1 in the skin of mice produces larger, more numerous, and more highly branched vessels. These results raise the possibility that angiopoietins can be used, alone or in combination with VEGF, to promote therapeutic angiogenesis.

862 citations


Cited by
More filters
Journal ArticleDOI
14 Feb 1997-Science
TL;DR: It is suggested that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarianAngiogenesis.
Abstract: Putative endothelial cell (EC) progenitors or angioblasts were isolated from human peripheral blood by magnetic bead selection on the basis of cell surface antigen expression In vitro, these cells differentiated into ECs In animal models of ischemia, heterologous, homologous, and autologous EC progenitors incorporated into sites of active angiogenesis These findings suggest that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarian angiogenesis

8,598 citations

Journal ArticleDOI
13 Dec 2001-Nature
TL;DR: This integrating paradigm provides a new conceptual framework for future research and drug discovery in diabetes-specific microvascular disease and seems to reflect a single hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain.
Abstract: Diabetes-specific microvascular disease is a leading cause of blindness, renal failure and nerve damage, and diabetes-accelerated atherosclerosis leads to increased risk of myocardial infarction, stroke and limb amputation. Four main molecular mechanisms have been implicated in glucose-mediated vascular damage. All seem to reflect a single hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain. This integrating paradigm provides a new conceptual framework for future research and drug discovery.

8,289 citations

Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations

Journal ArticleDOI
Werner Risau1
17 Apr 1997-Nature
TL;DR: Understanding of the molecular basis underlying angiogenesis, particularly from the study of mice lacking some of the signalling systems involved, has greatly improved, and may suggest new approaches for treating conditions such as cancer that depend onAngiogenesis.
Abstract: After the developing embryo has formed a primary vascular plexus by a process termed vasculogenesis, further blood vessels are generated by both sprouting and non-sprouting angiogenesis, which are progressively pruned and remodelled into a functional adult circulatory system. Recent results, particularly from the study of mice lacking some of the signalling systems involved, have greatly improved our understanding of the molecular basis underlying these events, and may suggest new approaches for treating conditions such as cancer that depend on angiogenesis.

5,793 citations

Journal ArticleDOI
TL;DR: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult.
Abstract: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult1 Neovascularization (angiogenesis) is also implicated in the pathogenesis of a number of disorders These include: proliferative retinopathies, age-related macular degeneration, tumors, rheumatoid arthritis, and psoriasis1,2 A strong correlation has been noted between density of microvessels in primary breast cancers and their nodal metastases and patient survival3 Similarly, a correlation has been reported between vascularity and invasive behavior in several other tumors4–6

4,603 citations