scispace - formally typeset
Search or ask a question
Author

Thomas Opel

Bio: Thomas Opel is an academic researcher from Alfred Wegener Institute for Polar and Marine Research. The author has contributed to research in topics: Permafrost & Ice core. The author has an hindex of 23, co-authored 71 publications receiving 1482 citations. Previous affiliations of Thomas Opel include Humboldt University of Berlin & University of Sussex.


Papers
More filters
Journal ArticleDOI
Julien Emile-Geay1, Nicholas P. McKay2, Darrell S. Kaufman2, Lucien von Gunten, Jianghao Wang3, Kevin J. Anchukaitis4, Nerilie J. Abram5, Jason A. Addison6, Mark A. J. Curran7, Mark A. J. Curran8, Michael N. Evans9, Benjamin J. Henley10, Zhixin Hao, Belen Martrat11, Belen Martrat12, Helen McGregor13, Raphael Neukom14, Gregory T. Pederson6, Barbara Stenni15, Kaustubh Thirumalai16, Johannes P. Werner17, Chenxi Xu18, Dmitry Divine19, Bronwyn C. Dixon10, Joelle Gergis10, Ignacio A. Mundo20, Takeshi Nakatsuka, Steven J. Phipps8, Cody C. Routson2, Eric J. Steig21, Jessica E. Tierney4, Jonathan J. Tyler22, Kathryn Allen10, Nancy A. N. Bertler23, Jesper Björklund24, Brian M. Chase25, Min Te Chen26, Edward R. Cook27, Rixt de Jong14, Kristine L. DeLong28, Daniel A. Dixon29, Alexey A. Ekaykin30, Alexey A. Ekaykin31, Vasile Ersek32, Helena L. Filipsson33, Pierre Francus34, Mandy Freund10, Massimo Frezzotti, Narayan Prasad Gaire35, Narayan Prasad Gaire36, Konrad Gajewski37, Quansheng Ge, Hugues Goosse38, Anastasia Gornostaeva, Martin Grosjean14, Kazuho Horiuchi39, Anne Hormes40, Katrine Husum19, Elisabeth Isaksson19, Selvaraj Kandasamy41, Kenji Kawamura42, Kenji Kawamura43, K. Halimeda Kilbourne9, Nalan Koc19, Guillaume Leduc44, Hans W. Linderholm40, Andrew Lorrey45, Vladimir Mikhalenko46, P. Graham Mortyn47, Hideaki Motoyama42, Andrew D. Moy7, Andrew D. Moy8, Robert Mulvaney48, Philipp Munz49, David J. Nash50, David J. Nash51, Hans Oerter52, Thomas Opel52, Anais Orsi53, Dmitriy V. Ovchinnikov54, Trevor J. Porter55, Heidi A. Roop56, Casey Saenger21, Masaki Sano, David J. Sauchyn38, Krystyna M. Saunders57, Krystyna M. Saunders14, Marit-Solveig Seidenkrantz58, Mirko Severi59, Xuemei Shao, Marie-Alexandrine Sicre60, Michael Sigl61, Kate E. Sinclair, Scott St. George62, Jeannine-Marie St. Jacques63, Jeannine-Marie St. Jacques64, Meloth Thamban65, Udya Kuwar Thapa62, Elizabeth R. Thomas48, Chris S. M. Turney66, Ryu Uemura67, A. E. Viau37, Diana Vladimirova30, Diana Vladimirova31, Eugene R. Wahl68, James W. C. White69, Zicheng Yu70, Jens Zinke71, Jens Zinke72 
University of Southern California1, Northern Arizona University2, MathWorks3, University of Arizona4, Australian National University5, United States Geological Survey6, Australian Antarctic Division7, University of Tasmania8, University of Maryland, College Park9, University of Melbourne10, Spanish National Research Council11, University of Cambridge12, University of Wollongong13, University of Bern14, Ca' Foscari University of Venice15, University of Texas at Austin16, University of Bergen17, Chinese Academy of Sciences18, Norwegian Polar Institute19, National University of Cuyo20, University of Washington21, University of Adelaide22, Victoria University of Wellington23, Swiss Federal Institute for Forest, Snow and Landscape Research24, University of Montpellier25, National Taiwan Ocean University26, Columbia University27, Louisiana State University28, University of Maine29, Saint Petersburg State University30, Arctic and Antarctic Research Institute31, Northumbria University32, Lund University33, Institut national de la recherche scientifique34, Tribhuvan University35, Nepal Academy of Science and Technology36, University of Ottawa37, Université catholique de Louvain38, Hirosaki University39, University of Gothenburg40, Xiamen University41, National Institute of Polar Research42, Japan Agency for Marine-Earth Science and Technology43, Aix-Marseille University44, National Institute of Water and Atmospheric Research45, Russian Academy of Sciences46, Autonomous University of Barcelona47, British Antarctic Survey48, University of Tübingen49, University of the Witwatersrand50, University of Brighton51, Alfred Wegener Institute for Polar and Marine Research52, Université Paris-Saclay53, Sukachev Institute of Forest54, University of Toronto55, University at Buffalo56, Australian Nuclear Science and Technology Organisation57, Aarhus University58, University of Florence59, Pierre-and-Marie-Curie University60, Paul Scherrer Institute61, University of Minnesota62, Concordia University63, University of Regina64, National Centre for Antarctic and Ocean Research65, University of New South Wales66, University of the Ryukyus67, National Oceanic and Atmospheric Administration68, University of Colorado Boulder69, Lehigh University70, Australian Institute of Marine Science71, Free University of Berlin72
TL;DR: A community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative, suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.
Abstract: Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

260 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed seasonal and interannual variations of thawing-induced cliff top retreat and marine abrasion (thermo-abrasion) on Muostakh Island in the southern central Laptev Sea.
Abstract: . Observations of coastline retreat using contemporary very high resolution satellite and historical aerial imagery were compared to measurements of open water fraction, summer air temperature, and wind. We analysed seasonal and interannual variations of thawing-induced cliff top retreat (thermo-denudation) and marine abrasion (thermo-abrasion) on Muostakh Island in the southern central Laptev Sea. Geomorphometric analysis revealed that total ground ice content on Muostakh is made up of equal amounts of intrasedimentary and macro ground ice and sums up to 87%, rendering the island particularly susceptible to erosion along the coast, resulting in land loss. Based on topographic reference measurements during field campaigns, we generated digital elevation models using stereophotogrammetry, in order to block-adjust and orthorectify aerial photographs from 1951 and GeoEye, QuickBird, WorldView-1, and WorldView-2 imagery from 2010 to 2013 for change detection. Using sea ice concentration data from the Special Sensor Microwave Imager (SSM/I) and air temperature time series from nearby Tiksi, we calculated the seasonal duration available for thermo-abrasion, expressed as open water days, and for thermo-denudation, based on the number of days with positive mean daily temperatures. Seasonal dynamics of cliff top retreat revealed rapid thermo-denudation rates of −10.2 ± 4.5 m a−1 in mid-summer and thermo-abrasion rates along the coastline of −3.4 ± 2.7 m a−1 on average during the 2010–2013 observation period, currently almost twice as rapid as the mean rate of −1.8 ± 1.3 m a−1 since 1951. Our results showed a close relationship between mean summer air temperature and coastal thermo-erosion rates, in agreement with observations made for various permafrost coastlines different to the East Siberian Ice Complex coasts elsewhere in the Arctic. Seasonality of coastline retreat and interannual variations of environmental factors suggest that an increasing length of thermo-denudation and thermo-abrasion process simultaneity favours greater coastal erosion. Coastal thermo-erosion has reduced the island's area by 0.9 km2 (24%) over the past 62 years but shrank its volume by 28 x 106 m3 (40%), not least because of permafrost thaw subsidence, with the most pronounced with rates of g− 11 cm a−1 on yedoma uplands near the island's rapidly eroding northern cape. Recent acceleration in both will halve Muostakh Island's lifetime to less than a century.

150 citations

Journal ArticleDOI
TL;DR: In this article, an isotope record from ice wedges in Siberia suggests that winters have warmed since the mid-Holocene, whereas summer temperatures have cooled, and the authors argue that the opposing trends are related to the seasonally different orbital forcing over this interval.
Abstract: Holocene temperature trends in the Arctic are unclear. An isotope record from ice wedges in Siberia suggests that winters have warmed since the mid-Holocene, whereas summer temperatures have cooled. Relative to the past 2,000 years1,2, the Arctic region has warmed significantly over the past few decades. However, the evolution of Arctic temperatures during the rest of the Holocene is less clear. Proxy reconstructions, suggest a long-term cooling trend throughout the mid- to late Holocene3,4,5, whereas climate model simulations show only minor changes or even warming6,7,8. Here we present a record of the oxygen isotope composition of permafrost ice wedges from the Lena River Delta in the Siberian Arctic. The isotope values, which reflect winter season temperatures, became progressively more enriched over the past 7,000 years, reaching unprecedented levels in the past five decades. This warming trend during the mid- to late Holocene is in opposition to the cooling seen in other proxy records3,5,9. However, most of these existing proxy records are biased towards summer temperatures. We argue that the opposing trends are related to the seasonally different orbital forcing over this interval. Furthermore, our reconstructed trend as well as the recent maximum are consistent with the greenhouse gas forcing and climate model simulations, thus reconciling differing estimates of Arctic and northern high-latitude temperature evolution during the Holocene.

115 citations

Journal ArticleDOI
TL;DR: In this article, the authors present pollen, sediment, and ground-ice stable water isotope data obtained from coastal exposures on Bol’shoy Lyakhovsky Island (New Siberian Archipelago, Arctic Ocean) that mirror the coldest conditions during the Sartan period between about 26 and 22 ka BP, using pollen and sediment data for summer conditions and stable water data for winter conditions.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the role of changing climatic conditions on permafrost degradation and hydrology was investigated in the transition zone between the tundra and forest ecotones at the boundary of continuous and discontinuous perma-frost of the lower Yenisei River.
Abstract: Role of changing climatic conditions on permafrost degradation and hydrology was investigated in the transition zone between the tundra and forest ecotones at the boundary of continuous and discontinuous permafrost of the lower Yenisei River. Three watersheds of various sizes were chosen to represent the characteristics of the regional landscape conditions. Samples of river flow, precipitation, snow cover, and permafrost ground ice were collected over the watersheds to determine isotopic composition of potential sources of water in a river flow over a two year period. Increases in air temperature over the last forty years have resulted in permafrost degradation and a decrease in the seasonal frost which is evident from soil temperature measurements, permafrost and active-layer monitoring, and analysis of satellite imagery. The lowering of the permafrost table has led to an increased storage capacity of permafrost affected soils and a higher contribution of ground water to river discharge during winter months. A progressive decrease in the thickness of the layer of seasonal freezing allows more water storage and pathways for water during the winter low period making winter discharge dependent on the timing and amount of late summer precipitation. There is a substantial seasonal variability of stable isotopic composition of river flow. Spring flooding corresponds to the isotopic composition of snow cover prior to the snowmelt. Isotopic composition of river flow during the summer period follows the variability of precipitation in smaller creeks, while the water flow of larger watersheds is influenced by the secondary evaporation of water temporarily stored in thermokarst lakes and bogs. Late summer precipitation determines the isotopic composition of texture ice within the active layer in tundra landscapes and the seasonal freezing layer in forested landscapes as well as the composition of the water flow during winter months.

84 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors highlight promising advances in characterization and modeling of permafrost regions and present ongoing research challenges toward projecting hydrologic and ecologic consequences of permaferost thaw at time and spatial scales that are useful to managers and researchers.
Abstract: Where present, permafrost exerts a primary control on water fluxes, flowpaths, and distribution. Climate warming and related drivers of soil thermal change are expected to modify the distribution of permafrost, leading to changing hydrologic conditions, including alterations in soil moisture, connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below ground. The field of permafrost hydrology is undergoing rapid advancement with respect to multiscale observations, subsurface characterization, modeling, and integration with other disciplines. However, gaining predictive capability of the many interrelated consequences of climate change is a persistent challenge due to several factors. Observations of hydrologic change have been causally linked to permafrost thaw, but applications of process-based models needed to support and enhance the transferability of empirical linkages have often been restricted to generalized representations. Limitations stem from inadequate baseline permafrost and unfrozen hydrogeologic characterization, lack of historical data, and simplifications in structure and process representation needed to counter the high computational demands of cryohydrogeologic simulations. Further, due in part to the large degree of subsurface heterogeneity of permafrost landscapes and the nonuniformity in thaw patterns and rates, associations between various modes of permafrost thaw and hydrologic change are not readily scalable; even trajectories of change can differ. This review highlights promising advances in characterization and modeling of permafrost regions and presents ongoing research challenges toward projecting hydrologic and ecologic consequences of permafrost thaw at time and spatial scales that are useful to managers and researchers.

530 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over subdecadal timescales.
Abstract: Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions. The polygonal patterns in permafrost regions are caused by the formation of ice wedges. Observations of polygon evolution reveal that rapid ice-wedge melting has occurred across the Arctic since 1950, altering tundra hydrology.

527 citations

01 Dec 2012
TL;DR: In this article, the authors present a data set of satellite-tracked sea-ice motion for the period of 1992-2010 that reveals large and statistically significant trends in Antarctic ice drift, which, in most sectors, can be linked to local winds.
Abstract: The sea-ice cover around Antarctica has experienced a slight expansion in area over the past decades1, 2. This small overall increase is the sum of much larger opposing trends in different sectors that have been proposed to result from changes in atmospheric temperature or wind stress3, 4, 5, precipitation6, 7, ocean temperature8, and atmosphere or ocean feedbacks9, 10. However, climate models have failed to reproduce the overall increase in sea ice11. Here we present a data set of satellite-tracked sea-ice motion for the period of 1992–2010 that reveals large and statistically significant trends in Antarctic ice drift, which, in most sectors, can be linked to local winds. We quantify dynamic and thermodynamic processes in the internal ice pack and show that wind-driven changes in ice advection are the dominant driver of ice-concentration trends around much of West Antarctica, whereas wind-driven thermodynamic changes dominate elsewhere. The ice-drift trends also imply large changes in the surface stress that drives the Antarctic ocean gyres, and in the fluxes of heat and salt responsible for the production of Antarctic bottom and intermediate waters.

425 citations