scispace - formally typeset
Search or ask a question
Author

Thomas P. Burke

Bio: Thomas P. Burke is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Intracellular parasite & Rickettsia. The author has an hindex of 9, co-authored 20 publications receiving 528 citations. Previous affiliations of Thomas P. Burke include Indiana University & University of California.

Papers
More filters
Journal ArticleDOI
01 Jul 2013-Mbio
TL;DR: It is demonstrated that c-di-AMP is a critical signaling molecule required for bacterial replication, cell wall stability, and pathogenicity and plays a crucial role in the establishment of bacterial infection.
Abstract: Listeria monocytogenes infection leads to robust induction of an innate immune signaling pathway referred to as the cytosolic surveillance pathway (CSP), characterized by expression of beta interferon (IFN-β) and coregulated genes We previously identified the IFN-β stimulatory ligand as secreted cyclic di-AMP Synthesis of c-di-AMP in L monocytogenes is catalyzed by the diadenylate cyclase DacA, and multidrug resistance transporters are necessary for secretion To identify additional bacterial factors involved in L monocytogenes detection by the CSP, we performed a forward genetic screen for mutants that induced altered levels of IFN-β One mutant that stimulated elevated levels of IFN-β harbored a transposon insertion in the gene lmo0052 Lmo0052, renamed here PdeA, has homology to a cyclic di-AMP phosphodiesterase, GdpP (formerly YybT), of Bacillus subtilis and is able to degrade c-di-AMP to the linear dinucleotide pApA Reduction of c-di-AMP levels by conditional depletion of the di-adenylate cyclase DacA or overexpression of PdeA led to marked decreases in growth rates, both in vitro and in macrophages Additionally, mutants with altered levels of c-di-AMP had different susceptibilities to peptidoglycan-targeting antibiotics, suggesting that the molecule may be involved in regulating cell wall homeostasis During intracellular infection, increases in c-di-AMP production led to hyperactivation of the CSP Conditional depletion of dacA also led to increased IFN-β expression and a concomitant increase in host cell pyroptosis, a result of increased bacteriolysis and subsequent bacterial DNA release These data suggest that c-di-AMP coordinates bacterial growth, cell wall stability, and responses to stress and plays a crucial role in the establishment of bacterial infection

172 citations

Journal ArticleDOI
TL;DR: The data suggest that avoidance of inflammasome activation is a critical virulence strategy for intracellular pathogens, and that activation of the inflammaome leads to decreased long-term protective immunity and diminished T-cell responses.
Abstract: Inflammasomes are intracellular multiprotein signaling complexes that activate Caspase-1, leading to the cleavage and secretion of IL-1β and IL-18, and ultimately host cell death. Inflammasome activation is a common cellular response to infection; however, the consequences of inflammasome activation during acute infection and in the development of long-term protective immunity is not well understood. To investigate the role of the inflammasome in vivo, we engineered a strain of Listeria monocytogenes that ectopically expresses Legionella pneumophila flagellin, a potent activator of the Nlrc4 inflammasome. Compared with wild-type L. monocytogenes, strains that ectopically secreted flagellin induced robust host cell death and IL-1β secretion. These strains were highly attenuated both in bone marrow-derived macrophages and in vivo compared with wild-type L. monocytogenes. Attenuation in vivo was dependent on Nlrc4, but independent of IL-1β/IL-18 or neutrophil activity. L. monocytogenes strains that activated the inflammasome generated significantly less protective immunity, a phenotype that correlated with decreased induction of antigen-specific T cells. Our data suggest that avoidance of inflammasome activation is a critical virulence strategy for intracellular pathogens, and that activation of the inflammasome leads to decreased long-term protective immunity and diminished T-cell responses.

120 citations

Journal ArticleDOI
Brody J. DeYoung1, Dong Qi1, Sang Hee Kim1, Thomas P. Burke1, Roger W. Innes1 
TL;DR: A transient expression system in the plant Nicotiana benthamiana and stable transgenic Arabidopsis plants found that both PBS1 cleavage products are required to activate RPS5 and can do so in the absence of AvrPphB, and this finding suggests that NB‐LRR proteins may function as fine‐tuned sensors of alterations in the structures of effector targets.
Abstract: Nucleotide binding-leucine rich repeat (NB-LRR) proteins function as intracellular receptors for the detection of pathogens in both plants and animals. Despite their central role in innate immunity, the molecular mechanisms that govern NB-LRR activation are poorly understood. The Arabidopsis NB-LRR protein RPS5 detects the presence of the Pseudomonas syringae effector protein AvrPphB by monitoring the status of the Arabidopsis protein kinase PBS1. AvrPphB is a cysteine protease that targets PBS1 for cleavage at a single site within the activation loop of PBS1. Using a transient expression system in the plant Nicotiana benthamiana and stable transgenic Arabidopsis plants we found that both PBS1 cleavage products are required to activate RPS5 and can do so in the absence of AvrPphB. We also found, however, that the requirement for cleavage of PBS1 could be bypassed simply by inserting five amino acids at the PBS1 cleavage site, which is located at the apex of the activation loop of PBS1. Activation of RPS5 did not require PBS1 kinase function, and thus RPS5 appears to sense a subtle conformational change in PBS1, rather than cleavage. This finding suggests that NB-LRR proteins may function as fine-tuned sensors of alterations in the structures of effector targets.

80 citations

Journal ArticleDOI
TL;DR: Data indicate that the genes required for lysozyme resistance are highly upregulated determinants of L. monocytogenes pathogenesis that are required for avoiding the enzymatic activity of ly sozyme in the blood.
Abstract: Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is highly resistant to lysozyme, a ubiquitous enzyme of the innate immune system that degrades cell wall peptidoglycan. Two peptidoglycan-modifying enzymes, PgdA and OatA, confer lysozyme resistance on L. monocytogenes; however, these enzymes are also conserved among lysozyme-sensitive nonpathogens. We sought to identify additional factors responsible for lysozyme resistance in L. monocytogenes. A forward genetic screen for lysozyme-sensitive mutants led to the identification of 174 transposon insertion mutations that mapped to 13 individual genes. Four mutants were killed exclusively by lysozyme and not other cell wall-targeting molecules, including the peptidoglycan deacetylase encoded by pgdA, the putative carboxypeptidase encoded by pbpX, the orphan response regulator encoded by degU, and the highly abundant noncoding RNA encoded by rli31. Both degU and rli31 mutants had reduced expression of pbpX and pgdA, yet DegU and Rli31 did not regulate each other. Since pbpX and pgdA are also present in lysozyme-sensitive bacteria, this suggested that the acquisition of novel enzymes was not responsible for lysozyme resistance, but rather, the regulation of conserved enzymes by DegU and Rli31 conferred high lysozyme resistance. Each lysozyme-sensitive mutant exhibited attenuated virulence in mice, and a time course of infection revealed that the most lysozyme-sensitive strain was killed within 30 min of intravenous infection, a phenotype that was recapitulated in purified blood. Collectively, these data indicate that the genes required for lysozyme resistance are highly upregulated determinants of L. monocytogenes pathogenesis that are required for avoiding the enzymatic activity of lysozyme in the blood.

68 citations

Journal ArticleDOI
TL;DR: It is shown that actin mobilization is insufficient to block autophagy recognition of the pathogen Rickettsia parkeri, and outer membrane protein B (OmpB) is employed to block ubiquitylation of the bacterial surface proteins, thereby evading destruction by host autophagic processes.
Abstract: Rickettsia are obligate intracellular bacteria that evade antimicrobial autophagy in the host cell cytosol by unknown mechanisms. Other cytosolic pathogens block different steps of autophagy targeting, including the initial step of polyubiquitin-coat formation. One mechanism of evasion is to mobilize actin to the bacterial surface. Here, we show that actin mobilization is insufficient to block autophagy recognition of the pathogen Rickettsia parkeri. Instead, R. parkeri employs outer membrane protein B (OmpB) to block ubiquitylation of the bacterial surface proteins, including OmpA, and subsequent recognition by autophagy receptors. OmpB is also required for the formation of a capsule-like layer. Although OmpB is dispensable for bacterial growth in endothelial cells, it is essential for R. parkeri to block autophagy in macrophages and to colonize mice because of its ability to promote autophagy evasion in immune cells. Our results indicate that OmpB acts as a protective shield to obstruct autophagy recognition, thereby revealing a distinctive bacterial mechanism to evade antimicrobial autophagy.

53 citations


Cited by
More filters
Journal ArticleDOI
29 Oct 2015-Nature
TL;DR: Gasdermin D (Gsdmd) is identified by genome-wide clustered regularly interspaced palindromic repeat-Cas9 nuclease screens of caspase-11- and caspasing-1-mediated pyroptosis in mouse bone marrow macrophages to offer insight into inflammasome-mediated immunity/diseases and change the understanding of pyroPTosis and programmed necrosis.
Abstract: Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.

3,554 citations

Journal ArticleDOI
TL;DR: Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.
Abstract: Cell death research was revitalized by the understanding that necrosis can occur in a highly regulated and genetically controlled manner. Although RIPK1 (receptor-interacting protein kinase 1)- and RIPK3-MLKL (mixed lineage kinase domain-like)-mediated necroptosis is the most understood form of regulated necrosis, other examples of this process are emerging, including cell death mechanisms known as parthanatos, oxytosis, ferroptosis, NETosis, pyronecrosis and pyroptosis. Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.

1,373 citations

Journal ArticleDOI
TL;DR: Members of the Nod-like receptor (NLR) family, including NLRP1, NLRP3 and NLRC4, and the cytosolic receptor AIM2 are critical components of inflammasomes and link microbial and endogenous danger signals to the activation of caspase-1.
Abstract: Inflammasomes are multiprotein complexes that activate caspase-1, which leads to maturation of the proinflammatory cytokines interleukin 1β (IL-1β) and IL-18 and the induction of pyroptosis. Members of the Nod-like receptor (NLR) family, including NLRP1, NLRP3 and NLRC4, and the cytosolic receptor AIM2 are critical components of inflammasomes and link microbial and endogenous danger signals to the activation of caspase-1. In response to microbial infection, activation of the inflammasomes contributes to host protection by inducing immune responses that limit microbial invasion, but deregulated activation of inflammasomes is associated with autoinflammatory syndromes and other pathologies. Thus, understanding inflammasome pathways may provide insight into the mechanisms of host defense against microbes and the development of inflammatory disorders.

866 citations

Journal Article
TL;DR: It is demonstrated that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.
Abstract: Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of IL-1β and IL-18. While wild type Salmonella typhimurium infection is lethal to mice, a strain that persistently expresses flagellin was cleared by the cytosolic flagellin detection pathway via NLRC4 activation of caspase-1; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1 induced pyroptotic cell death released bacteria from macrophages, exposing them to uptake and killing by reactive oxygen species in neutrophils. Similarly, caspase-1 cleared Legionella and Burkholderia by cytokine independent mechanisms. Our results show, for the first time, that caspase-1 can clear intracellular bacteria in vivo independent of IL-1β and IL-18, and establish pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.

808 citations

Journal ArticleDOI
TL;DR: This review focuses on molecular and morphological characteristics of pyroptosis and the individual inflammasomes and their contribution to defense against infection in mice and humans.
Abstract: Inflammatory caspases play a central role in innate immunity by responding to cytosolic signals and initiating a twofold response. First, caspase-1 induces the activation and secretion of the two prominent pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18. Second, either caspase-1 or caspase-11 can trigger a form of lytic, programmed cell death called pyroptosis. Pyroptosis operates to remove the replication niche of intracellular pathogens, making them susceptible to phagocytosis and killing by a secondary phagocyte. However, aberrant, systemic activation of pyroptosis in vivo may contribute to sepsis. Emphasizing the efficiency of inflammasome detection of microbial infections, many pathogens have evolved to avoid or subvert pyroptosis. This review focuses on molecular and morphological characteristics of pyroptosis and the individual inflammasomes and their contribution to defense against infection in mice and humans.

696 citations